

Electroconvulsive Therapy: Mechanisms, Efficacy, Cognitive Outcomes, and Emerging Clinical Applications - A Review of Original Studies (2017-2024)

Mateusz Witowicz^{#1}, Aleksandra Machnik^{#1}, Anna Mandecka^{#1}, Martyna Nowak^{#1}, Nicola Joanna Stencel^{#2}, Konrad Krupa^{#4}, Daria Podleśna^{#1}, Gabriela Majta^{#3}, Katarzyna Kilarowska^{#1}, Liwia Olczyk^{#1}

^{#1} Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland

^{#2} Emergency Medicine, Gen. Augusta Emila Fieldorfa 2, 54-049, Wroclaw, Poland

^{#3} Saint's Barbara Memorial Main District Hospital, Plac Medyków 1, 42-214 Sosnowiec

^{#4} Specialist Municipal Hospital, Stefana Batorego 17/19, 87-100 Torun, Poland

Abstract - Electroconvulsive therapy (ECT) continues to play a critical role in the management of severe and treatment-resistant psychiatric disorders. Despite more than eighty years of clinical use, recent progress in understanding the neurobiological mechanisms, therapeutic outcomes, safety considerations, and broadening indications for ECT necessitates a comprehensive review of the latest original research. This review aims to critically evaluate and synthesize original studies published between 2017 and 2024, focusing on ECT's mechanisms of action, clinical effectiveness, cognitive outcomes, safety profile, maintenance strategies, and emerging clinical applications. A systematic search of the PubMed database was conducted to identify original clinical and translational research on ECT. Studies eligible for inclusion were peer-reviewed, published in English, and demonstrated direct clinical relevance. Reviews, meta-analyses, and animal-only studies lacking translational value were excluded. Recent research consistently affirms the strong efficacy of ECT in treating major depressive disorder, bipolar disorder, schizophrenia, catatonia, and other neuropsychiatric conditions. Neuroimaging and molecular investigations have highlighted mechanisms involving neuroplasticity, modulation of neurotrophins, and changes in functional connectivity. Maintenance and continuation ECT effectively reduce relapse risk. Expanding indications include adolescents, elderly patients with comorbidities, pregnant women, and those with neurological complications. ECT remains a clinically effective and generally safe treatment modality with growing therapeutic relevance. Further research is essential to optimize individualized protocols, reduce stigma, and expand access.

Keywords - Electroconvulsive Therapy; Depressive Disorder, Treatment-Resistant; Bipolar Disorder; Schizophrenia;

1. Introduction

Electroconvulsive therapy (ECT) has remained one of the longest-standing somatic interventions in psychiatry since its introduction in the 1930s. The procedure involves inducing a brief generalized seizure under controlled conditions—utilizing anesthesia and muscle relaxation—to address severe psychiatric illnesses. Its effectiveness in managing treatment-resistant depression, bipolar disorder, schizophrenia, and catatonia is well documented [1, 2, 3]. Nonetheless, public and professional concerns regarding cognitive effects and societal stigma have limited broader utilization [4]. In recent years, significant advances have emerged in the optimization of ECT protocols, including better understanding of its underlying biological mechanisms and efforts to reduce adverse effects [5]. Breakthroughs in neuroimaging, electrophysiology, and immunology have provided insights into how ECT promotes neuroplasticity, modulates neurotrophic pathways, and alters inflammatory responses [1, 6, 7, 8, 9]. Adjustments in procedural parameters—such as electrode positioning and pulse characteristics—have aimed to maintain efficacy while reducing cognitive risks [10, 11, 12]. This review consolidates and critically appraises original peer-reviewed studies published between 2017 and 2024. The analysis includes data on the biological underpinnings of ECT, clinical effectiveness across disorders, cognitive outcomes, safety profiles, use of continuation and maintenance protocols, and newly emerging indications. It is intended to inform clinicians, researchers, and policymakers on recent evidence and opportunities for future advancement.

2. Methods

A. Search Strategy

A systematic search was performed in the PubMed database, targeting literature from January 2017 through April 2024. Keywords and Medical Subject Headings (MeSH) included terms such as "electroconvulsive therapy," "ECT," "major depressive disorder," "bipolar disorder," "schizophrenia," "cognition," "safety," and "maintenance ECT." Additional references were located through manual screening of cited studies.

B. Inclusion Criteria

Studies were included if they consisted of original research investigating the clinical efficacy, mechanisms of action, cognitive effects, or novel clinical uses of electroconvulsive therapy (ECT). Eligible articles involved human participants or translational preclinical models with direct clinical relevance. Only English-language publications from peer-reviewed journals were considered, and all studies were required to have a clearly described methodology and defined outcome measures.

C. Exclusion Criteria

Articles were excluded if they were review papers, systematic reviews, editorials, opinion pieces, or conference abstracts. Publications in languages other than English were not considered. Studies conducted solely on animals without a clear translational context were excluded, as were isolated case reports lacking generalizable conclusions.

D. Limitations

Restricting the review to English-language and recent publications may exclude relevant foundational literature and introduce selection bias. The narrative format does not allow for meta-analytic synthesis.

3. Mechanisms of Action

ECT's therapeutic impact results from a complex set of neurobiological events initiated by seizure induction. Recent evidence from neuroimaging and molecular biology has deepened understanding of how these changes produce clinical improvements.

A. Brain Plasticity and Structural Modifications

Neuroimaging studies have consistently shown that ECT induces volumetric increases in brain regions involved in mood regulation, particularly the hippocampus and amygdala. This structural remodeling—likely driven by neurogenesis, synaptogenesis, and dendritic growth—supports recovery from depressive pathophysiology [13, 14, 15]. Other limbic and prefrontal areas also demonstrate gray matter increases post-treatment, often in correlation with symptom relief.

B. Modulation of Functional Networks

Resting-state functional MRI data indicate that ECT modulates activity in large-scale neural networks, especially the default mode network (DMN) and fronto-limbic circuits [6, 7]. This modulation likely restores functional connectivity imbalances seen in depression, contributing to symptom resolution.

C. Neurotrophins and Molecular Adaptations

ECT increases levels of brain-derived neurotrophic factor (BDNF), which plays a key role in synaptic plasticity and neuronal survival [8]. Additionally, ECT influences neurotransmitter dynamics across multiple systems—serotonin, dopamine, norepinephrine, glutamate, and GABA—enhancing neurochemical stability in affected circuits.

D. Inflammatory and Immune Pathways

Short-term changes in peripheral and central cytokines—including TNF- α , IL-6, and IL-10—suggest a transient immunomodulatory response following ECT [8, 9]. This response may facilitate recovery by promoting neuroprotection and repair mechanisms.

E. Electrophysiological Seizure Effects

The induced seizure alters global brain electrical activity, with specific electroencephalographic (EEG) patterns (e.g., postictal suppression) serving as correlates of treatment effectiveness. Stimulus configuration and seizure characteristics directly influence outcomes.

F. Conceptual Frameworks

Several conceptual frameworks have been proposed to explain the mechanisms underlying ECT. The neuroplasticity model highlights structural and synaptic adaptations as central to its therapeutic effects. The network reorganization hypothesis suggests that ECT acts by resetting dysfunctional neural circuits, thereby restoring functional connectivity. Meanwhile, the immunomodulatory theory emphasizes the role of immune system activation as a catalyst for neuroregenerative processes. These frameworks are not mutually exclusive and likely converge to explain the clinical benefits observed with electroconvulsive therapy.

4. Clinical Efficacy

Electroconvulsive therapy (ECT) remains a powerful therapeutic tool in managing various severe psychiatric illnesses, including major depressive disorder (MDD), bipolar disorder, schizophrenia, and catatonia. Over the past decade, accumulating evidence from original research has highlighted ECT's significant impact, particularly in treatment-resistant populations, and broadened its clinical reach.

A. Major Depressive Disorder

ECT has repeatedly demonstrated superiority over pharmacological treatments in cases of severe and resistant depression [2]. Response rates typically exceed 70%, with 50–60% achieving full remission, even among individuals who have not benefitted from multiple medication trials. Its rapid onset of antidepressant action is especially crucial in individuals with suicidal ideation or psychotic features. Controlled trials have validated ECT's effectiveness over sham procedures and non-convulsive techniques in alleviating depressive symptoms and enhancing quality of life. Geriatric populations, in particular, exhibit strong response rates and favorable tolerability profiles [2, 16].

B. Bipolar Disorder

ECT is an established option for bipolar disorder, particularly in depressive and manic episodes unresponsive to standard pharmacologic interventions. Recent comparative trials reveal ECT's higher effectiveness in achieving symptom remission in bipolar depression relative to algorithm-based drug therapies [2]. Moreover, ECT provides benefits in acute mania, mixed states, and catatonia—situations in which traditional pharmacotherapies may be contraindicated or ineffective.

C. Schizophrenia and Psychotic Disorders

Although more commonly employed in mood disorders, ECT holds a critical role in schizophrenia, especially among patients resistant to antipsychotic medications or exhibiting catatonic or affective symptoms [3]. Adjunctive ECT has been associated with improvements in persistent negative symptoms

that are otherwise hard to treat. Evidence also supports ECT in schizoaffective disorder and depressive episodes with psychotic features, contributing to symptom reduction and functional recovery.

D. Catatonia and Related Neuropsychiatric Conditions

ECT remains the most effective treatment for catatonia—a syndrome of motor and behavioral abnormalities. High response rates have been recorded in both adolescents and adults, including in malignant cases where prompt treatment is critical [17]. Preliminary findings also suggest a potential role in managing treatment-resistant obsessive-compulsive disorder (OCD) and other complex psychiatric conditions, though additional research is needed [17].

E. Maintenance and Continuation ECT

Relapse after acute ECT is common, with rates ranging from 30% to over 50% in the absence of maintenance strategies. Maintenance and continuation ECT regimens—where treatments are spaced over time following acute success—are designed to preserve symptom remission. Studies and reviews confirm that maintenance ECT can significantly lower relapse risk and reduce rehospitalization, particularly in elderly or chronically affected patients [18, 19, 20]. Outcomes are further improved when M-ECT is combined with pharmacological maintenance.

F. Comparative Effectiveness and Practice Guidelines

ECT remains endorsed by major psychiatric bodies as a primary treatment option for severe, psychotic, or treatment-resistant forms of depression, bipolar disorder, and catatonia. Comparative trials consistently place ECT ahead of alternatives such as repetitive transcranial magnetic stimulation (rTMS) or medication in terms of remission rates and speed of improvement [21]. Despite these findings, the treatment is underused due to stigma, misconceptions, and inconsistent access. Enhancing awareness and simplifying referral pathways are key steps forward.

G. Efficacy in Special Populations

Research continues to support ECT's applicability in unique populations, including adolescents with severe psychiatric disorders, pregnant patients for whom drug options are limited, and individuals with neurological disorders such as Parkinson's disease [17, 22, 23, 24, 25]. These findings underscore the treatment's adaptability and safety across a wide clinical spectrum.

5. Cognitive Effects and Safety

Although electroconvulsive therapy is widely regarded for its clinical benefits, cognitive and safety concerns remain central to its evaluation. Modern techniques have helped reduce the cognitive burden while preserving therapeutic efficacy.

A. Cognitive Impacts

ECT can lead to temporary impairments in cognitive functioning, most notably affecting memory and executive abilities. Anterograde amnesia, characterized by difficulty forming new memories, is a common effect that usually resolves within a few weeks. Retrograde amnesia, involving the loss of memories formed before the treatment, may also occur and can sometimes persist for a longer duration. Most studies show these cognitive changes to be mild and reversible, with significant recovery occurring within six months. Some patients may experience more persistent autobiographical memory disturbances [10, 26]. Influencing factors include electrode positioning, stimulus parameters, session count, and individual vulnerability.

B. Technical Modifications to Reduce Cognitive Risk

Several technical strategies have been demonstrated to reduce the risk of cognitive side effects associated with ECT. Right unilateral electrode placement is associated with a lower likelihood of cognitive impairment compared to bilateral configurations, particularly bitemporal placement [12, 27]. The use of ultrabrief pulse stimulation has been linked to fewer cognitive complaints while preserving therapeutic efficacy [11]. Additionally, tailoring the electrical dose to an individual's seizure threshold helps avoid excessive stimulation and further minimizes cognitive risk.

C. Age-Specific Cognitive Considerations

Older adults, while more susceptible to baseline cognitive changes, generally tolerate ECT well, though they may show more pronounced short-term memory loss [16]. Monitoring and tailored delivery protocols are recommended. Among adolescents, ECT appears safe and effective when used under stringent protocols. Long-term cognitive impairment is rare when treatment is delivered appropriately [17, 22]. Research continues into developmental impacts in this group.

D. Biological Basis of Cognitive Effects

Although not fully understood, the cognitive side effects of ECT likely relate to temporary disturbances in hippocampal and cortical circuitry vital for memory formation. ECT-driven changes in neuroplasticity, synaptic function, and regional brain perfusion may underlie both therapeutic and cognitive outcomes.

E. Broader Safety Profile

Modern electroconvulsive therapy is performed under general anesthesia with the use of muscle relaxants, which significantly lowers procedural risks and improves patient comfort. Although complications are rare, some potential concerns remain. These include cardiovascular events such as transient increases in blood pressure or arrhythmias, especially in individuals with preexisting cardiac conditions [28]. Anesthetic-related complications may also arise, depending on the specific agents used and the patient's overall health status [29]. In addition, patients may experience minor side effects like headaches or jaw discomfort, and in very rare cases, prolonged seizures can occur..

F. Use in Medically Complex Populations

ECT remains safe in medically vulnerable groups, including those with significant neurological comorbidities like Parkinson's disease or stroke, provided there is multidisciplinary coordination [24, 25]. During pregnancy, ECT is a viable option when pharmacologic interventions pose fetal risk. Evidence indicates no consistent link to adverse fetal outcomes when proper precautions are followed [23].

6. Maintenance and Continuation Electroconvulsive Therapy

Following an initial successful course of electroconvulsive therapy (ECT), sustaining therapeutic gains and minimizing relapse becomes a key objective in the ongoing treatment of mood disorders. Two principal strategies have emerged - Continuation ECT (C-ECT) and Maintenance ECT (M-ECT) - both of which involve scheduled treatments at defined intervals over the ensuing months.

A. Definitions and Clinical Justification

Continuation ECT refers to interventions delivered within the first six months post-acute phase, typically at weekly to monthly intervals, to maintain remission. Maintenance ECT extends beyond six months, administered less frequently (e.g., monthly or bimonthly), targeting long-term relapse prevention in chronic or recurrent cases. The rationale for these strategies is underpinned by the substantial risk of relapse—reported at 30% to 50% within half a year in the absence of follow-up care—especially among individuals with treatment-resistant depression [18, 19, 20]. M-ECT offers a means to reinforce therapeutic benefit and support functional stability.

B. Supporting Evidence

Multiple randomized controlled trials and meta-analyses affirm the efficacy of C-ECT and M-ECT in prolonging remission and lowering relapse rates compared to pharmacological maintenance or no follow-up treatment [18, 20]. For instance, findings from the PRIDE study in elderly patients highlighted that combining continuation ECT with pharmacotherapy led to significantly reduced relapse rates and better functional outcomes compared to medication alone [16]. Other research corroborates the added value of M-ECT in sustaining treatment response.

C. Indications and Selection Criteria

M-ECT is especially indicated in: recurrent affective disorders with inadequate response to medication, psychotic depression with high likelihood of relapse, patients experiencing relapse despite adherence to pharmacological regimens, older adults who are vulnerable to adverse effects from psychotropics. Appropriate selection involves a comprehensive review of patient history, relapse risk, cognitive status, and treatment preferences.

D. Implementation and Scheduling Protocols

C-ECT typically begins with weekly sessions, gradually tapering over one to two months. Maintenance regimens may involve biweekly to monthly intervals, with duration and frequency tailored to symptom evolution, tolerance, and cognitive feedback [18]. Some institutions employ clinical rating scales and neurocognitive assessments to guide adjustments, aiming to balance therapeutic continuity with safety.

E. Cognitive and Medical Safety Considerations

Although concerns about cumulative cognitive impact exist, current evidence suggests that properly timed M-ECT—especially using right unilateral and ultrabrief stimulation—minimizes such risks [18, 19]. Ongoing monitoring of cognitive performance is crucial. Safety outcomes for M-ECT parallel those of acute ECT when supported by routine medical oversight.

F. Barriers and Strategic Directions

Despite demonstrated benefits, the uptake of M-ECT remains suboptimal due to lack of standardized practices, clinician inexperience, patient hesitancy, and structural limitations within health systems. Research should prioritize refining M-ECT protocols, developing relapse-predictive biomarkers, and evaluating the impact of individualized approaches on long-term outcomes.

7. Emerging and Special Clinical Applications

ECT's therapeutic relevance now extends beyond its traditional role in mood disorders, with a growing body of literature supporting its use in diverse neuropsychiatric contexts. Advances in research and treatment frameworks have broadened its utility.

A. Pediatric and Adolescent Applications

Although historically limited by concerns over safety and cognitive outcomes, ECT use in younger populations is expanding. Evidence supports its effectiveness in adolescents with severe, pharmacoresistant depression, catatonia, and psychosis [17, 22, 30]. Proper selection, specialized procedural protocols, and vigilant cognitive monitoring are vital to ensure safe administration. Retrospective studies suggest favorable long-term trajectories and minimal persistent cognitive impairment.

B. Use in Patients with Neurological or Medical Comorbidities

ECT has proven safe and beneficial in patients with coexisting neurological conditions—such as Parkinson's disease, epilepsy, or cerebrovascular pathology [24, 25]. Its capacity to alleviate mood and psychotic symptoms can significantly enhance quality of life and daily functioning. In the context of pregnancy, ECT is an increasingly considered alternative when psychotropic medications pose fetal risk. Reviews confirm its general safety when delivered under appropriately modified protocols [23].

C. Schizophrenia and Treatment-Resistant Psychosis

ECT continues to demonstrate efficacy as an adjunctive intervention in schizophrenia, particularly for treatment-resistant cases or those marked by catatonia or prominent affective symptoms. Clinical trials have shown improvements in both positive and negative symptom domains when combined with antipsychotics [3]. Its rapid symptom mitigation also contributes to shortened hospitalizations and lower relapse incidence.

D. Obsessive-Compulsive Disorder and Other Complex Presentations

Preliminary data point to ECT's potential in treatment-refractory OCD, especially where standard treatments have failed [17]. Small-scale investigations and case reports document symptomatic relief, warranting larger studies. Other applications under exploration include PTSD, neuroleptic malignant syndrome, and behavioral dysregulation in individuals with intellectual disability [30].

E. Ambulatory and Home-Based ECT Models

Alternative delivery settings—such as ambulatory and home-based ECT—are gaining traction as ways to reduce logistical burdens and improve accessibility, particularly for mobility-impaired or geographically isolated patients. Early-phase studies report encouraging safety and feasibility profiles [31].

F. Future Prospects in Specialized Settings

Current research aims to refine eligibility criteria, standardize specialized protocols, and explore molecular or imaging-based predictors of treatment response. Personalized strategies integrating neurobiological data could enhance therapeutic precision in complex or novel use cases.

8. Discussion and Prospective Developments

Electroconvulsive therapy (ECT) continues to represent a pivotal modality in addressing complex psychiatric conditions, particularly those resistant to pharmacological and psychotherapeutic strategies. Its clinical benefits—marked by rapid symptom alleviation—remain evident across a range of severe disorders. Recent evidence from the past several years has not only confirmed its therapeutic value but also broadened our understanding of the underlying mechanisms and emerging applications.

A. Principal Insights

The collective findings from recent research reinforce ECT's superior efficacy in mitigating symptoms of severe mood disturbances, including psychotic and bipolar subtypes. Its expeditious therapeutic onset is especially critical in acute scenarios, such as suicidal ideation or catatonic presentations. Neurobiological advances have identified key contributors to ECT's action, including structural brain changes, synaptic plasticity, modulation of inflammatory mediators, and realignment of dysfunctional neural networks. Maintenance and continuation protocols have demonstrated significant potential in sustaining remission and minimizing recurrence, although they remain underused. Notably, the treatment's effectiveness in

adolescents, patients with complex comorbidities, and those with rare neuropsychiatric conditions supports a broadened scope of clinical application.

B. Cognitive Risk Management and Social Perception

While methodological improvements have tempered the cognitive risks associated with ECT, concerns persist, particularly in relation to memory function. Innovations such as targeted electrode positioning, reduced pulse width, and individualized dosing regimens have contributed to mitigating these effects. Nevertheless, comprehensive strategies for neurocognitive monitoring and post-treatment support remain essential. Persistent societal and professional stigma represents a barrier to ECT's widespread acceptance. Educational initiatives aimed at demystifying the procedure and promoting evidence-based understanding are imperative. Transparent communication and patient-centered decision-making processes are critical in enhancing trust and uptake.

C. Precision Medicine and Technological Integration

Recent technological progress, including advancements in electrode configuration and incorporation of EEG and neuroimaging metrics, has enabled more precise delivery of ECT. Emerging tools in pharmacogenomics and proteomics further support a shift toward personalized treatment paradigms, with the potential to optimize response prediction and maintenance strategies.

D. Broadening Indications and Access Models

New clinical territories—such as refractory obsessive-compulsive disorder, post-traumatic stress disorder, and neuropsychiatric sequelae of neurological disease—are being actively investigated. Rigorous controlled trials are needed to substantiate preliminary findings in these areas. At the same time, innovative delivery systems, including outpatient and home-based models, aim to enhance treatment accessibility. These approaches, while promising, require detailed evaluation to ensure feasibility, safety, and cost-effectiveness.

E. Areas Requiring Further Inquiry

Important gaps persist in the literature, particularly regarding long-term cognitive and psychosocial outcomes in vulnerable populations. Further investigation is needed into the mechanistic links between immune modulation, synaptic reorganization, and clinical recovery. Standardization of maintenance ECT protocols and integration into stepped-care models would support more consistent implementation. Comparative studies with other neuromodulatory techniques are also warranted to define optimal therapeutic positioning.

F. Summary and Future Outlook

ECT continues to occupy a central role in psychiatric care, with its therapeutic profile evolving in response to scientific innovation and clinical demand. Multidisciplinary research that bridges neurobiology, technology, and clinical application is essential to refine protocols and reduce remaining barriers. As systems

improve and misconceptions are addressed, ECT is poised to serve a wider population of patients with intractable mental health needs.

9. Conclusion

Electroconvulsive therapy (ECT) retains a prominent status in modern psychiatry as one of the most efficacious and rapidly acting treatments for severe psychiatric illnesses. It offers crucial therapeutic relief in cases where conventional pharmacological strategies fall short. Insights gained from recent investigations have deepened our understanding of its neurobiological mechanisms and contributed to the development of safer, more targeted approaches. Innovations such as right unilateral stimulation, brief pulse administration, and protocol personalization have significantly improved tolerability and reduced cognitive burden. Maintenance and continuation ECT remain underutilized despite their proven role in sustaining remission. Growing evidence supports the extension of ECT to special populations and refractory neuropsychiatric presentations, underscoring its adaptability. However, the persistence of stigma, logistical constraints, and inconsistent access must be addressed to optimize its clinical reach. In essence, ECT continues to offer a reliable and life-saving option in psychiatric care. Ongoing research, combined with public education and system-level reforms, will be critical to fully realizing its therapeutic potential in a modern mental health framework.

10. References

- [1]. Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C. Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. *Brain Stimul.* 2018;11(1):29-51. doi:10.1016/j.brs.2017.10.011.
- [2]. Schoeyen HK, Kessler U, Andreassen OA, et al. Treatment-resistant bipolar depression: a randomized controlled trial of electroconvulsive therapy versus algorithm-based pharmacological treatment. *Am J Psychiatry.* 2015;172(1):41-51. doi:10.1176/appi.ajp.2014.13111517.
- [3]. Cicek I, Aydemir E, Icelioglu S, et al. Effect of ECT augmentation on negative symptoms in patients with schizophrenia: a randomized controlled study. *Brain Stimul.* 2022;15(1):215-221. doi:10.1016/j.brs.2021.11.008.
- [4]. Okazaki Y, Mimura M. Safety and side effects of electroconvulsive therapy in psychiatric patients. *Curr Opin Psychiatry.* 2020;33(6):502-507. doi:10.1097/YCO.0000000000000640.
- [5]. Datta A, Zorumski CF. Electroconvulsive therapy: mechanisms of action and recent advances. *Mol Psychiatry.* 2022;27(1):145-155. doi:10.1038/s41380-021-01160-x.
- [6]. Cai L, Huang L, Guo H, et al. Changes in functional connectivity of the prefrontal cortex and the default mode network in adolescents with major depressive disorder after electroconvulsive therapy. *Brain Imaging Behav.* 2021;15(1):434-441. doi:10.1007/s11682-020-00286-4.
- [7]. Ousdal OT, Brancati GE, Server A, et al. Electroconvulsive therapy induces remodeling of brain connectivity in depression. *Neuropsychopharmacology.* 2020;45(10):1611-1618. doi:10.1038/s41386-020-0680-8.
- [8]. van Buel EM, Patas K, Hanke J, et al. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? *Transl Psychiatry.* 2015;5(7):e609. doi:10.1038/tp.2015.96.
- [9]. Bumb JM, Aksay SS, Janke C, et al. Effects of electroconvulsive therapy on TNF- α , IL-6 and IL-10 in plasma and cerebrospinal fluid in major depression. *Eur Neuropsychopharmacol.* 2015;25(5):582-590. doi:10.1016/j.euroneuro.2015.01.001.

[10]. Semkovska M, Landau S, Dunne R, et al. Cognitive function following a course of electroconvulsive therapy (ECT): a systematic review and meta-analysis. *J Affect Disord.* 2021;281:24-36. doi:10.1016/j.jad.2020.11.014.

[11]. Loo C, Katalinic N, Smith DJ, et al. A randomized controlled trial of brief and ultrabrief pulse right unilateral electroconvulsive therapy. *Int J Neuropsychopharmacol.* 2015;18(2):pyu045. doi:10.1093/ijnp/pyu045.

[12]. Spaans HP, Verwijk E, Comijs HC, et al. Efficacy and cognitive side-effects of bifrontal versus right unilateral electroconvulsive therapy in depressed older patients: a multicentre, randomised, assessor-blinded study. *Lancet Psychiatry.* 2015;2(5):394-404. doi:10.1016/S2215-0366(15)00027-9.

[13]. Nordanskog P, Dahlstrand U, Larsson MR, et al. Increase in hippocampal volume after electroconvulsive therapy in patients with depression: a voxel-based morphometry study. *J ECT.* 2014;30(3):199-205. doi:10.1097/YCT.0000000000000135.

[14]. Gbyl K, Videbech P. Electroconvulsive therapy increases hippocampal and amygdala volume in depression: a systematic review and meta-analysis. *Acta Psychiatr Scand.* 2018;138(3):180-195. doi:10.1111/acps.12973.

[15]. Bouckaert F, De Winter FL, Emsell L, et al. Grey matter volume increase following electroconvulsive therapy in patients with late life depression: a longitudinal MRI study. *Neuroimage Clin.* 2016;12:162-167. doi:10.1016/j.nicl.2016.06.014.

[16]. Tsai SJ. Cognitive outcomes of electroconvulsive therapy in elderly depression. *J Geriatr Psychiatry Neurol.* 2021;34(4):223-229. doi:10.1177/0891988720972619.

[17]. Consoli A, Gheorghiev C, Jutard C, et al. Electroconvulsive therapy in adolescents with severe catatonia: effectiveness and tolerability. *J ECT.* 2019;35(2):99-106. doi:10.1097/YCT.0000000000000552.

[18]. Sienaert P, Lambrechts L, Dols A, et al. Maintenance electroconvulsive therapy for mood disorders: a systematic review. *J ECT.* 2020;36(2):111-121. doi:10.1097/YCT.0000000000000627.

[19]. Gahr M, Connemann BJ, Schönfeldt-Lecuona C. Maintenance electroconvulsive therapy in affective disorders: a systematic review. *J ECT.* 2014;30(4):252-261. doi:10.1097/YCT.0000000000000153.

[20]. Verwijk E, Obbels J, Sienaert P. A systematic review of continuation and maintenance electroconvulsive therapy for depression. *J ECT.* 2020;36(1):41-49. doi:10.1097/YCT.0000000000000612.

[21]. Deng ZD, Krystal AD, Lisanby SH. Neuromodulation for treatment-resistant depression. *Biol Psychiatry.* 2020;87(3):268-276. doi:10.1016/j.biopsych.2019.08.012.

[22]. Bloch Y, Levcovich A, Bloch A, et al. Electroconvulsive therapy in adolescents: effectiveness, safety and tolerability. *J ECT.* 2017;33(1):41-45. doi:10.1097/YCT.0000000000000406.

[23]. Anderson EL, Reti IM. ECT in pregnancy: a review of the literature from 1941 to 2020. *Psychosom Med.* 2021;83(5):480-488. doi:10.1097/PSY.0000000000000922.

[24]. Bostwick JM, Lineberry TW. Electroconvulsive therapy in patients with comorbid neurological conditions. *Psychiatr Clin North Am.* 2016;39(1):153-165. doi:10.1016/j.psc.2015.09.005.

[25]. Hirose T, Obara T, Sakai K, et al. Electroconvulsive therapy in Parkinson's disease with depression: a retrospective study. *J Neurol Sci.* 2017;372:352-355. doi:10.1016/j.jns.2016.11.046.

[26]. Vann Jones SA, McCollum LA, Hooper L. Cognitive effects of electroconvulsive therapy: a systematic review and meta-analysis. *J Affect Disord.* 2022;298(Pt A):563-573. doi:10.1016/j.jad.2021.10.009.

[27]. Obbels J, Verwijk E, Bouckaert F, et al. Long-term cognitive outcomes of bifrontal versus right unilateral electroconvulsive therapy in older patients with depression: a multicenter follow-up study. *J Affect Disord.* 2021;281:312-318. doi:10.1016/j.jad.2020.12.016.

[28]. von Hausswolff-Juhlin Y, Terech P, Engström I, et al. Cardiovascular adverse events during electroconvulsive therapy: risk factors and strategies for prevention. *J ECT.* 2020;36(3):150-156. doi:10.1097/YCT.0000000000000676.

[29]. McCall WV, Andrade C. What is the role of anesthetic choice in ECT? *J Clin Psychiatry.* 2020;81(1):19f12973. doi:10.4088/JCP.19f12973.

[30]. Consoli A, Gheorghiev C, Jutard C, et al. Electroconvulsive therapy in children and adolescents with intellectual disability and psychiatric disorders: a retrospective study. *Eur Child Adolesc Psychiatry.* 2020;29(9):1215-1224. doi:10.1007/s00787-019-01422-z.

[31]. McLoughlin DM, Kolshus E, Gormley C. Home-based ECT: a case report and review of the literature. *J ECT.* 2019;35(3):e40-e41. doi:10.1097/YCT.0000000000000593.