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Abstract 

Artificial intelligence (AI) has become an increasingly important tool in dermatology, largely due to 

the visual nature of skin disease assessment and the rapid development of machine learning 

techniques. In particular, deep learning models based on convolutional neural networks have 

demonstrated high performance in the analysis of clinical and dermoscopic images, enabling 

automated classification, segmentation and detection of skin lesions. Numerous studies report 

diagnostic accuracy comparable to that of experienced dermatologists in controlled experimental 

settings. Recent research extends beyond retrospective validation and emphasizes clinical 

implementation, human–AI collaboration and integration into diagnostic workflows, including total 

body photography and longitudinal surveillance of high-risk patients. Despite these advances, 

significant challenges persist, such as limited model generalizability, underrepresentation of darker 

skin phototypes, variability in image acquisition conditions and the limited interpretability of deep 

learning systems. This review summarizes current applications of AI in dermatology, highlights key 

limitations and outlines future directions for the safe, transparent and equitable integration of AI into 

routine clinical practice. 

1. INTRODUCTION 

Artificial intelligence (AI) is a field of computer science focused on the development of systems capable of 

performing tasks that traditionally require human intelligence, such as pattern recognition, classification, 

prediction and decision support. In medical applications, AI primarily relies on machine learning and deep 
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learning algorithms, which enable systems to learn from large datasets and to identify complex, non-linear 

relationships within data [1]. 

Dermatology represents a particularly suitable domain for the application of artificial intelligence due to its 

strong reliance on visual assessment. The diagnostic process in dermatology is largely based on the evaluation of 

skin lesions, dermoscopic structures and morphological patterns, which can be effectively analysed using image-

based deep learning models, especially convolutional neural networks (CNNs) [1]. Advances in these methods 

have enabled the development of computer-aided diagnostic systems capable of classifying and segmenting skin 

lesions with performance approaching that of experienced dermatologists under controlled conditions [7-12]. 

The increasing interest in AI in dermatology is driven by clinical challenges such as interobserver 

variability, the growing burden of skin cancer surveillance and limited access to specialist care in some 

healthcare settings. [8,10-13] Large, publicly available image databases, including the International Skin 

Imaging Collaboration (ISIC) archive, HAM10000 and Derm7pt datasets, have played a key role in facilitating 

the training and validation of dermatological AI models [2–6]. 

Despite these advances, significant limitations remain, including restricted generalizability of models trained 

on homogeneous datasets, underrepresentation of diverse skin phototypes and limited transparency of deep 

learning decision processes [27-29]. Consequently, artificial intelligence should be regarded as a supportive tool 

designed to augment clinical judgement rather than replace it, with its safe implementation requiring robust 

validation and careful integration into clinical workflows. [13,18,27-29].  

 

2.  FOUNDATIONS OF ARTIFICIAL INTELLIGENCE IN DERMATOLOGY 

Artificial intelligence (AI) has become an asset in dermatology largely because the specialty heavily depends on 

visual evaluation of skin lesions, rashes and dermatoscopic features. Among the AI techniques, deep learning, 

especially convolutional neural networks (CNNs) stands out as the most commonly utilized method for 

examining dermatological images. CNNs facilitate the automated analysis of collections of clinical and 

dermoscopic images, aiding in processes like image classification, segmentation and lesion identification, with 

accuracy approaching that of expert dermatologists. [1] 

 

2.1 Convolutional Neural Networks (CNNs) 

CNNs are a class of deep neural networks specifically designed to process image data. Their architecture 

incorporates convolutional layers that automatically learn hierarchical image features. Early layers detect basic 

structures such as edges, textures, and color gradients, while deeper layers capture more complex visual patterns 

relevant to dermatological diagnosis, such as pigment networks, vascular structures, or lesion asymmetry. [1] 

2.1.1. Input Layer 

The input layer receives raw pixel data, typically represented as a 2D or 3D tensor. Unlike traditional neural 

networks, which flatten images into vectors, CNNs preserve spatial structure, allowing the model to detect 

patterns based on location and proximity of pixels. [1] 

2.1.2 Convolutional Layers 

These layers apply small filters (kernels) that slide across the image to detect local features such as edges, 

textures, or changes in color. As layers deepen, CNNs learn increasingly complex patterns relevant to 

dermatology, such as lesion borders or pigment structures. [1] 
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2.1.3 Activation Functions 

Following each convolution, activation functions such as ReLU (Rectified Linear Unit) introduce nonlinearity 

into the network. Without nonlinear activation, the network would behave like a linear filter and fail to learn 

complex visual patterns.[1] 

2.1.4 Pooling Layers 

Pooling reduces the spatial size of feature maps while keeping the most important information. The most 

frequently used method is max pooling.  This step decreases computation and enhances the model's resilience to 

minor variations in the location or appearance. [1] 

2.1.5. Fully Connected Layers 

Toward the end of the CNN, feature maps are flattened and passed to fully connected (dense) layers. These 

layers combine the extracted features to perform decision-making tasks such as: 

 classifying lesions (e.g., benign vs. malignant), 

 predicting disease categories, 

 generating risk scores. 

2.1.6. Training Process 

During training, the weights of the CNN are adjusted using backpropagation along with gradient descent. 

Techniques like data augmentation and dropout help prevent overfitting and improve generalization. [1] 

 

 

2.2. Commonly Used AI Techniques in Dermatological Imaging 

2.2.1. Image Classification 

Image classification is the most widely studied task in dermatological AI. The goal is to sort an image into a 

specific diagnostic category, which may include differentiating between malignant and benign lesions or 

recognizing conditions like eczema, psoriasis, and vitiligo. 

CNN-based classifiers are typically trained on large datasets of labeled images, using loss functions such as 

categorical cross-entropy. Their effectiveness is measured with indicators like accuracy, sensitivity, specificity, 

and the area under the receiver operating characteristic curve (AUC). Importantly, models for identifying 

melanoma have shown levels of accuracy similar to that of board-certified dermatologists in controlled 

experimental environments. [1] 

2.2.2. Image Segmentation 

Segmentation involves identifying the edges of skin lesions within image. This process is crucial for measuring 

lesion asymmetry, color distribution, and irregular borders—key diagnostic features in dermoscopy. 

Segmentation improves downstream tasks by: 

 isolating relevant lesion areas, 

 reducing noise from surrounding skin, 

 enabling pixel-level analysis for malignancy prediction. 
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Applications include melanoma border extraction, psoriasis plaque quantification, and automated scoring of 

inflammatory skin diseases. [1] 

2.2.3. Object Detection 

Object detection algorithms identify and localize one or more lesions within a broader field of view. This is 

particularly relevant for total-body photography, where patients may present with dozens or hundreds of nevi 

requiring surveillance. 

Detection systems support doctors by highlighting atypical lesions that need further examination or follow-up. 

[1]  

 

2.3Transfer Learning in Dermatology 

A major challenge in dermatological AI is the limited availability of large, diverse, and well-annotated image 

datasets. To address this, researchers frequently employ transfer learning, a method in which CNNs pretrained 

on large general-purpose datasets are fine-tuned on dermatology-specific images. 

Advantages of transfer learning include: 

 Improved performance with small datasets, which is common in rare dermatoses. 

 Faster convergence during training due to initialized feature representations. 

 Reduced computational cost, since only the final layers must be retrained. 

Transfer learning has become a standard practice in the development of dermatology AI models, enabling high 

diagnostic accuracy even when available training data are limited or imbalanced. [1] 

 

3.  DERMATOLOGICAL DATABASES USED IN THE DEVELOPMENT OF ARTIFICIAL 

INTELLIGENCE SYSTEMS 

Recent advances in machine learning have substantially accelerated the development of artificial 

intelligence (AI)–based algorithms for medical image analysis. In dermatology, AI-driven computer-aided 

diagnostic (CAD) systems have demonstrated significant potential in the detection and classification of skin 

lesions, including malignant melanoma and other forms of skin cancer. The principal advantages of AI-based 

diagnostic tools include their wide accessibility, scalability, and the ability to provide decision support 

comparable to expert-level assessment, particularly in settings with limited access to experienced dermatologists. 

The availability of large, well-annotated, and publicly accessible dermatological image datasets is a 

fundamental prerequisite for the training, validation, and benchmarking of AI algorithms. Among the most 

widely used and scientifically validated datasets in this field are the International Skin Imaging Collaboration 

(ISIC) archive, HAM10000, and Derm7pt. 

 

3.1 International Skin Imaging Collaboration (ISIC) 

The International Skin Imaging Collaboration (ISIC) is a global research initiative aimed at reducing 

skin cancer–related mortality through the advancement of digital skin imaging and artificial intelligence. ISIC 

integrates multiple dermatological datasets and currently comprises more than 549,000 skin lesion images, 

making it the largest publicly available repository of its kind to date. 
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A central component of the initiative is the ISIC Archive, an open-source platform that enables the 

contribution and dissemination of skin lesion images. The archive primarily focuses on dermoscopic images of 

individual skin lesions, which are inherently standardized due to the use of specialized acquisition devices and 

are associated with fewer privacy concerns compared with conventional clinical photographs. Each image is 

linked to a ground-truth diagnosis, often supported by histopathological confirmation, and may include 

additional clinical metadata. The ISIC Archive serves as a critical resource for education, research, and 

algorithm development. It allows researchers to query and download images individually or in batches using 

faceted search tools. Furthermore, ISIC actively fosters collaboration between the dermatology and computer 

science communities by organizing scientific meetings, publishing research findings, and hosting internationally 

recognized AI Grand Challenges, which provide standardized benchmarks for evaluating the performance of 

diagnostic algorithms.[2] 

 

3.2 HAM10000 Dataset 

In 2018, the HAM10000 dataset (“Human Against Machine with 10,000 training images”) was 

introduced as a large, curated benchmark dataset for skin lesion classification. The dataset consists of 10,015 

dermoscopic images collected over a period of approximately 20 years from multiple clinical centers. It includes 

images representing seven common diagnostic categories of pigmented skin lesions, with diagnoses established 

through histopathology, follow-up examinations, or expert consensus.[3] 

HAM10000 was specifically designed to support academic research in machine learning and is publicly 

available through the ISIC Archive. Due to its relatively balanced class distribution and standardized image 

quality, HAM10000 has become one of the most frequently used datasets for training and evaluating 

convolutional neural networks (CNNs). It is also commonly employed in studies comparing the diagnostic 

performance of AI systems with that of human experts, thereby providing an important reference point for 

assessing clinical applicability.[4] 

 

3.3 Derm7pt Dataset 

The Derm7pt dataset comprises approximately 2,000 clinical and dermoscopic color images of skin 

lesions, accompanied by structured clinical information. This dataset was developed to support the training and 

evaluation of CAD systems based on the seven-point checklist for melanoma, a well-established diagnostic 

algorithm used in dermoscopic practice.[5] Unlike many image-only datasets, Derm7pt provides multimodal 

data, including both visual information and annotated clinical criteria related to the seven-point malignancy 

score. This characteristic has led to widespread use in studies evaluating multitask and multimodal deep learning 

architectures. Research has demonstrated that models trained on Derm7pt can achieve strong classification 

performance while maintaining relatively low computational complexity. 

The release of the Derm7pt dataset has significantly contributed to the advancement of multimodal 

learning approaches in dermatology. By enabling the integration of image-based features with structured clinical 

descriptors, Derm7pt has inspired new methodological strategies for improving the accuracy and interpretability 

of AI-based skin cancer classification systems, and it continues to serve as a valuable benchmark in this research 

domain.[6] 
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4. ARTIFICIAL INTELLIGENCE IN DERMOSCOPY AND TOTAL BODY 

PHOTOGRAPHY 

4.1 Introduction 

Artificial intelligence has emerged as a promising tool in the image-based diagnosis of pigmented skin lesions, 

particularly melanoma, with several landmark studies providing evidence for its potential clinical relevance. In a 

pivotal study, Esteva et al. (2017) showed that a deep convolutional neural network trained on a large and 

heterogeneous dataset of 129,450 clinical images encompassing 2,032 skin disease categories achieved 

diagnostic performance comparable to that of 21 board-certified dermatologists when evaluated on biopsy-

proven images in binary classification tasks [7]. 

 Subsequent comparative reader studies extended these findings by directly evaluating the performance of deep 

learning algorithms against large cohorts of dermatologists under standardized dermoscopic conditions. Using a 

standardized set of dermoscopic images, Haenssle et al. (2018) reported that the deep learning model 

demonstrated a higher mean area under the receiver operating characteristic curve than the dermatologist cohort 

and was associated with higher specificity at matched sensitivity levels. Importantly, dermatologist performance 

improved when additional clinical information beyond dermoscopic images was incorporated. [8] This 

observation indicates that, while deep learning models perform strongly on image based assessment alone, 

human experts benefit from the integration of broader clinical context in melanoma diagnostics. 

Rather than focusing solely on performance comparisons, more recent work examined how decision support 

based on artificial intelligence influences clinical decision making. In this context, Tschandl et al. (2020) 

investigated the impact of artificial intelligence based decision support on diagnostic accuracy in the assessment 

of pigmented skin lesions by clinicians with varying levels of experience. The authors demonstrated that 

appropriately designed artificial intelligence based decision support improved diagnostic accuracy compared 

with unaided clinician assessment, with the greatest benefit observed among less experienced readers. At the 

same time, the study highlighted that misleading artificial intelligence outputs could negatively influence clinical 

decisions, underscoring the risk of overreliance on algorithmic support [9]. 

 

4.2 Why this topic matters 

Early detection of melanoma and other skin cancers depends on whether we can identify, in time, a lesion that 

differs from the patient’s usual pattern. Dermoscopy improves diagnostic accuracy, but several challenges 

remain in daily practice: variation between clinicians, a high number of lesions in high-risk patients, and the 

difficulty of noticing subtle changes over time. For this reason, research on artificial intelligence (AI) and 

machine learning (ML) tools has developed along two main lines: AI for dermoscopic image analysis and 

automated support in total body photography (TBP), especially 3D-TBP, where whole-skin mapping and 

longitudinal comparison are central. [10-24] 

4.3 AI in dermoscopy: from image classification to clinical decision support 

One of the papers that highlighted the potential of deep learning for skin lesion classification was the study by 

Esteva et al. in Nature, which showed that a neural network can reach very high performance in classifying 

images of skin lesions. This was an important step because the field moved from a technical curiosity to a 

realistic direction for medical imaging in dermatology. [10] 

Subsequent studies focused specifically on dermoscopy and direct comparisons with physicians. Haenssle et al. 

compared a convolutional neural network with dermatologists in identifying melanoma on dermoscopic images. 

These results suggest that the algorithm can perform at a comparable level and, in some settings, may outperform 

some clinicians. [11] A similar message comes from Brinker et al., who conducted a large head-to-head 
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comparison in which the algorithm achieved strong diagnostic performance on dermoscopic images against a 

large group of dermatologists. [12] 

In clinical practice, the key question is not whether a model “beats” a clinician, but whether patient outcomes 

improve when clinicians are supported. Tschandl et al., in Nature Medicine, described an approach based on 

human-computer collaboration for skin cancer recognition. Such a setup can improve diagnostic accuracy, but it 

requires careful consideration of how results are presented and how they influence clinical judgement. [13] This 

broader issue is also addressed in the meta-analysis by Krakowski et al., which focuses on human-AI interaction 

and shows that what matters is not only model performance, but also how decision support changes diagnostic 

behaviour. [18] 

At the level of evidence synthesis, Salinas et al. conducted a systematic review and meta-analysis comparing AI 

systems with clinicians in skin cancer diagnosis. These studies help organise the literature, while also showing 

that comparisons are difficult because studies differ in datasets, endpoints, patient selection, and testing 

conditions. [19] 

4.4 Prospective studies: when tools are tested beyond curated image sets 

The greatest clinical value appears when a tool is assessed in prospective studies under conditions close to 

routine care. In the study by Menzies et al., clinicians were compared with a mobile phone-based AI system for 

diagnosis and management of pigmented skin cancer in secondary care. This type of trial is important because it 

shows how a tool performs in real patient pathways, where the task is not only classification but also decisions 

about next steps. [14] Marchetti et al. performed a prospective validation of an open-source dermoscopy-based 

AI system for melanoma diagnosis (PROVE-AI), presenting an approach that emphasises clinical usefulness 

rather than performance in a purely experimental setting. [15] 

A similar direction is seen in the study by Heinlein et al., a prospective multicentre investigation in which AI 

was used to improve dermoscopic melanoma diagnosis in patient care. The multicentre design matters because it 

reduces the risk that results are driven by a single site, a single device type, or one imaging workflow. [17] A 

particularly practical contribution is the work by Papachristou et al., where decision support was evaluated in 

primary care. If such systems are to improve melanoma detection in practice, the largest benefit may come at 

first contact, by supporting triage and identifying cases that require urgent dermatology referral. [16] 

4.5 Variation in imaging conditions and the reliability of AI-based tools 

Model performance depends on the data used for development and testing. If the training material is 

homogeneous and collected under ideal conditions (one camera type, one population, mainly standard 

dermoscopic images), performance may look excellent; difficulties often appear when conditions change. [15-

17]  

HAM10000 is one of the most frequently cited public dermoscopic image datasets and serves as an important 

reference for comparative research. It enables more standardised benchmarking, but it does not remove the fact 

that real-world clinical practice is more heterogeneous than any single dataset. [20] This is one reason why the 

literature increasingly includes datasets and studies based on whole-body imaging, where acquisition conditions, 

lesion counts, and patient context differ from classic dermoscopy. 

4.6 Total body photography and 3D-TBP: where AI changes surveillance 

TBP (including 3D-TBP) is especially valuable in patients with many naevi and increased skin cancer risk, 

because it allows creation of a skin “map” and supports follow-up over time. In practice, the main challenge of 

TBP is scale: very large numbers of lesions to review, comparisons between visits, and the risk of missing a new 

or changing lesion among many similar ones. [21-23]  

In this context, datasets designed for automated methods are important. SLICE-3D is a dataset derived from 3D-

TBP, containing hundreds of thousands of cropped lesion images, created to support development of algorithms 

Anadolu Psikiyatri Dergisi || ISSN: 1302-6631 || Volume 27; Number 1

Page 111

https://doi.org/10.5281/zenodo.18383394



for lesion detection and assessment in whole-body imaging. It addresses a practical need: models should be able 

to work with TBP-derived images, not only with selected, high-quality dermoscopic photographs. [21] 

From a clinical implementation perspective, Winkler et al. evaluated an automated total body mapping algorithm 

for detecting clinically relevant melanocytic lesions. This is the type of tool that can reduce review time, 

structure the examination, and direct attention to lesions that warrant closer inspection. [22] From a clinician’s 

viewpoint, it is not an “automatic melanoma detector”, but a support tool that helps manage surveillance in 

patients with numerous lesions. 

Ferreirinha et al. describe 3D-TBP as a method supporting melanoma diagnosis and show that current 

development is moving toward linking whole-body mapping with targeted analysis of suspicious lesions. At the 

same time, their work makes it clear that 3D-TBP is intended to be part of a diagnostic strategy rather than a 

replacement for clinical assessment and dermoscopy. [23] 

4.7 How this can be combined into a single diagnostic workflow 

Based on the cited studies, a clinically coherent workflow can be outlined: 

- TBP/3D-TBP at baseline, to document the initial skin status and facilitate detection of new or changing lesions 

over time. [21-23] 

- Mapping algorithms, to automatically highlight areas of interest and reduce the risk of missing relevant lesions. 

[22] 

- Dermoscopy plus AI, to support assessment of selected lesions (for example new, evolving, or atypical) and to 

provide a second opinion in borderline cases. [10-17] 

- Final clinical decision by the clinician, because responsibility remains with the physician; the tool should 

support decision-making rather than “issue verdicts”. This is consistent with work emphasising human-AI 

collaboration and the effect of decision support on clinical choices. [13, 18] 

4.8 Limitations that should be stated explicitly 

These technologies are promising, but strong performance in one setting does not automatically translate to 

another. Differences in input data, patient populations, and imaging conditions can affect model performance; 

therefore, prospective and multicentre validation is essential. [15–17] A second key issue is the human-AI 

interaction: it is not enough for a model to perform well; its output must be presented in a way that supports 

sound clinical judgement rather than misleading clinicians or inappropriately inflating their confidence. [13, 18] 

Finally, TBP introduces an additional challenge: very large numbers of lesions and the need for meaningful 

selection of what is clinically relevant. [21,22] 

4.9 Summary 

Based on the cited bibliography, AI in dermoscopy can achieve high performance in image classification, with 

documented comparisons to dermatologists, and prospective studies suggest that these tools can be evaluated 

beyond controlled test conditions. [10-17] At the same time, the practical direction increasingly points toward 

combining dermoscopy with whole-body mapping (especially 3D-TBP) and tools that help clinicians manage 

surveillance in patients with many lesions. This includes moving from dataset development, through automated 

mapping, to targeted assessment of selected lesions. [20–23] The most reasonable conclusion is that this is not a 

replacement of clinicians by algorithms, but an attempt to improve detection and organise surveillance, provided 

that validation is robust and clinical use is well defined. [13, 15–19, 22–23] 

 

 

Anadolu Psikiyatri Dergisi || ISSN: 1302-6631 || Volume 27; Number 1

Page 112

https://doi.org/10.5281/zenodo.18383394



5. ARTIFICIAL INTELLIGENCE APPLICATIONS IN PSORIASIS SEVERITY ASSESSMENT AND 

THERAPEUTIC MONITORING: A COMPREHENSIVE REVIEW  

Artificial intelligence and machine learning have emerged as transformative technologies in dermatological 

practice, particularly demonstrating promising results in the automated assessment and monitoring of psoriasis 

severity [24].  

Psoriasis, a chronic immune-mediated inflammatory skin disorder affecting approximately 2–4% of the global 

population, has traditionally relied on manual clinical scoring systems, most notably the Psoriasis Area and 

Severity Index (PASI), which suffers from significant inter-rater variability and time-consuming evaluation 

processes [24].  

Recent advances in deep learning methodologies, particularly convolutional neural networks (CNNs), have 

demonstrated remarkable capability in predicting PASI scores with accuracy comparable to or exceeding that of 

experienced dermatologists [24].  

A systematic review analyzing 30 studies encompassing 9,748 patients and 41,080 psoriasis images revealed that 

machine learning models trained on large, diverse datasets could achieve PASI predictions with mean absolute 

errors as low as 3.12, compared to the mean absolute error of 4.67 observed among certified dermatologists [24].  

Advanced neural network architectures, including Cascade Mask Region-based CNNs with Swin Transformer 

backbones, have successfully addressed historical limitations in PASI scoring concerning inter-rater variability 

in assessing affected areas, with some models achieving automated PASI area score accuracy of 95.96% 

compared to dermatologists’ performance of 76.43% [24].  

Beyond image-based assessment, machine learning has been extended to evaluate body surface area (BSA) 

measurements through U-Net–based segmentation models achieving intraclass correlation coefficients of up to 

0.96 [24].  

Additionally, AI methods have been applied to reflectance confocal microscopy (RCM) image analysis, where 

the Multiscale Encoder–Decoder Network (MED-Net) demonstrated high performance in identifying 

diagnostically uninformative areas, achieving 82% sensitivity and 93% specificity [25].  

The clinical applicability of AI-driven tools has progressed substantially from retrospective laboratory validation 

toward prospective real-world implementation, establishing a five-level framework for clinical translation [24].  

While most published studies remain at Level 1 (single dataset training) or Level 2 (external validation), recent 

investigations have demonstrated prospective clinical utility at Levels 3 and 4, including portable devices for 

automated PASI assessment through comprehensive body imaging and digital image analysis that showed strong 

reproducibility and alignment with dermatologist-verified outcomes [24].  

Notably, machine learning models incorporating non-image-based predictors such as serum biomarkers—

including peripheral blood mononuclear cell profiling with flow cytometry to characterize memory T-helper cell 

subsets—have identified associations between specific cellular populations, particularly CCR6+ Th17 cells, and 

both psoriasis severity and the risk of progression to psoriatic arthritis [24].  

The integration of visual overlay techniques that display detected uninformative areas on coregistered 

dermoscopic images provides clinicians with objective quality assurance metrics at both the time of image 

capture and interpretation, potentially reducing patient recalls for inadequate imaging and enabling performance 

assessment of imaging technicians [25].  

Despite these promising developments, significant limitations persist in current AI applications for psoriasis 

assessment, including insufficient exploration of subjective disease manifestations beyond objective physical 

findings, limited consideration of lesion-specific location impacts on quality of life, and minimal integration of 

patient-reported outcomes and psychological measures into automated assessment algorithms [24]. 
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 Therapeutic monitoring through AI-enhanced platforms represents an emerging frontier, with remote monitoring 

tools demonstrating the capability for early detection of disease changes and timely therapeutic adjustments 

based on current disease status [24].  

Machine learning models trained on multicenter prospective datasets have shown enhanced generalization 

capability for predicting therapy response, particularly through ensemble learning and gradient boosting 

methodologies that integrate clinical, demographic, and imaging data [24].  

Nevertheless, the heterogeneity of published literature, the predominance of retrospective study designs, limited 

diversity of patient populations, and reliance on proprietary datasets continue to hinder systematic evaluation and 

large-scale clinical implementation [24].  

Future advancement requires multicenter prospective studies with ethnically diverse datasets, development of 

explainable AI models, integration of comprehensive patient-centered outcome measures, and systematic 

evaluation of model architectures and training strategies. Artificial intelligence systems should ultimately 

function as supportive tools that augment—rather than replace—dermatological expertise while adequately 

addressing the multifaceted psychological and quality-of-life burden of psoriasis [24] 

 

6. KEY TRENDS, LIMITATIONS, AND THREATS IN THE AUTOMATIC CLASSIFICATION OF SKIN 

LESIONS 

In recent years, deep learning models have achieved promising results in skin lesion classification and 

segmentation task [26,27].  Despite the enormous benefits that AI brings, the use of artificial intelligence-based 

solutions in dermatology involves significant risks. The challenges associated with using artificial intelligence in 

dermatology stem primarily from the need to adapt algorithms to diverse skin types, limited data quality, 

variability of disease symptoms and lack of transparency in the operation of neural networks [27,29]. The 

shortage of images of skin diseases is a significant barrier to effective neural network training and the flow of 

data between their sources is insufficient. At the same time, the available materials lack uniform quality 

standards [27]. 

In the context of detecting skin disease such as melanoma, skin tone is a factor that must be annotated correctly 

but existing skin scales are often limited or inconsistently applied [28]. Most of the data sets used to train AI 

algorithms are heavily dominated by light skin types (Fitzpatrick I–III). Images of darker skin phototypes 

(Fitzpatrick IV–VI) are much less numerous, resulting in reduced model effectiveness for darker skin tones [27]. 

This data imbalance leads to marked differences in the sensitivity and specificity of algorithms between 

phototype groups. Improperly designed and tested AI systems may unknowingly exacerbate existing inequalities 

in healthcare [28]. Patients from underrepresented groups may receive less accurate diagnoses, which contradicts 

the principle of equal access to medical care. An additional limitation is the simplified treatment of skin 

phototype as a one-dimensional scale from light to dark, which does not adequately represent the heterogeneity 

of skin colors. Research findings indicate that algorithms may be less effective at recognizing skin lesions in 

individuals with certain skin tones, such as yellowish or olive tones, even if they belong to the same phototype 

[28]. Such subtle biases are difficult to identify unequivocally, but they can have significant clinical 

consequences. 

Another aspect that warrants consideration is that the appearance of skin lesions in photographs is affected by 

differences in lighting, camera settings, camera quality, and device type, which can significantly influence the 

image features used by convolutional neural networks [27]. AI models often “learn” these technical differences 

related to image acquisition conditions rather than actual disease characteristics. As a result, the algorithm may 

only work well when photos are taken under conditions similar to those that are used to train the models. In the 

studies analyzed, neural networks were most often trained and evaluated on the same data set, but when 

implemented in a different center with a different population or using different diagnostic equipment, their 

performance drops dramatically [27]. This closed learning and testing scheme highlights a common limitation of 
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machine learning methods, known as the generalization problem. In studies testing the generalization ability of 

models, neural networks often failed to achieve satisfactory results. The rare use of independent validation sets 

limits the ability to assess the clinical usefulness of an algorithm [27]. Machine learning algorithms largely 

reflect the nature of the data on which they are trained, so any biases present in the input image sets directly 

translate into their performance. The effects of these biases only become apparent when testing models on 

independent data sets. 

From a legal perspective, issue that has not yet been fully resolved are  difficulties in interpreting the algorithm's 

decision - the inability to explain how neural networks work [29]. Modern neural networks function like “black 

boxes” - they can generate a result but it remains difficult to identify the factors that drive their decision-making 

processes. It is important for doctors to understand the basis on which the system recommends a given diagnosis. 

If the algorithm cannot provide a clear justification, it is more difficult to trust its results. This problem also 

carries has legal and ethical implications, as it makes it difficult to assign responsibility for potential errors [29]. 

Artificial intelligence technologies have significant potential to support dermatological diagnostics, but without a 

systematic solution to problems related to data quality, algorithmic bias, and lack of model transparency, they 

may lead to increased healthcare inequalities and clinical risk [27-29].Recent work points to the need for 

improved data set representativeness, reliable external validation, and a critical approach to model decision 

explanation methods [27-29]. Future research should combine technical improvements with ethical and 

regulatory frameworks to enable the safe and equitable implementation of AI systems in clinical practice. 

Possible solutions to the problems:  

- increasing the diversity of data sets, especially in terms of skin phototypes and shades, 

- documenting photography conditions to enable analysis of the impact of these variables, 

- testing algorithms on data from different centers and populations, 

- developing more reliable methods for explaining algorithmic decisions, 

- introducing clear regulations on the accountability and auditing of AI systems. 

 

7. SUMMARY 

The reviewed literature demonstrates that artificial intelligence, particularly deep learning based on 

convolutional neural networks, has achieved substantial progress in dermatological image analysis, AI systems 

have shown strong performance in key tasks such as image classification, lesion segmentation and object 

detection, with several studies reporting diagnostic accuracy comparable to or exceeding that of board-certified 

dermatologists in controlled settings [7-12,19] . The integration of transfer learning has further enhanced model 

performance in scenarios with limited training data, making AI development feasible even for rare skin 

conditions [1]. 

Beyond retrospective performance evaluations, recent research increasingly emphasizes clinical implementation 

and human–AI collaboration [13-18]. Prospective and multicentre studies suggest that AI-based decision support 

can improve diagnostic accuracy, especially among less experienced clinicians, provided that algorithmic 

outputs are presented in a transparent and clinically meaningful manner [9,13-17] . The expansion of AI 

applications into total body photography and three-dimensional whole-body imaging represents an important 

step toward improving surveillance in high-risk patients with numerous lesions, where cognitive overload poses 

a significant challenge [21-23]. 

Despite these advances, significant limitations remain. Many AI models suffer from limited generalizability due 

to homogeneous training datasets, underrepresentation of darker skin phototypes and sensitivity to variations in 

image acquisition conditions [27,28]. The “black-box” nature of deep learning models also raises ethical, legal 

and practical concerns regarding accountability and trust in clinical decision-making [29]. Without careful 
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attention to data quality, external validation and explainability, AI systems risk reinforcing existing healthcare 

disparities [27-29].  

In conclusion, artificial intelligence holds considerable promise as a supportive tool in dermatology, with the 

potential to enhance diagnostic accuracy, streamline workflows and improve patient surveillance [10-17,21-23] . 

However, its successful and equitable integration into clinical practice requires robust multicentre validation, 

diverse and representative datasets, transparent model design and clearly defined regulatory frameworks [15-

19,27-29]. AI should be viewed not as a replacement for dermatological expertise, but as an adjunct that 

augments clinical judgement and supports high-quality patient care [13,18]. 
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