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Abstract 

The dopamine hypothesis of schizophrenia, dominant for over five decades, has limitations in explaining the 

full spectrum of symptoms, particularly cognitive deficits and treatment-resistant psychosis. The glutamate 

hypothesis has emerged as a complementary and increasingly supported framework for understanding schizo-

phrenia pathophysiology. This review synthesizes current evidence regarding glutamatergic dysfunction in 

schizophrenia and its implications for precision psychiatry. We examine neurobiological mechanisms of N-

methyl-D-aspartate (NMDA) receptor hypofunction, neuroimaging biomarkers including magnetic resonance 

spectroscopy and functional connectivity abnormalities, immunological evidence including anti-NMDA re-

ceptor antibodies, and pharmacological interventions targeting the glutamate system. We discuss how glutama-

tergic biomarkers may stratify patient populations, predict treatment response, and guide personalized thera-

peutic approaches. Emerging evidence suggests that glutamatergic dysfunction represents a convergence point 

for multiple pathophysiological pathways in schizophrenia, offering novel opportunities for biomarker-driven 

diagnosis and treatment selection. This comprehensive overview provides a foundation for implementing pre-

cision psychiatry approaches based on glutamatergic dysfunction in clinical settings. 

1. INTRODUCTION 

Schizophrenia remains one of the most severe and costly mental health disorders, affecting approximately 1% of the 

global population with profound impacts on cognitive, social, and occupational functioning. Despite decades of re-

search and pharmacological development, the fundamental neurobiological mechanisms underlying schizophrenia re-

main incompletely understood. The dopamine hypothesis, proposed by Van Rossum in 1966 and refined through subse-

quent decades, has provided the theoretical foundation for antipsychotic drug development and has been instrumental in 

understanding psychotic symptoms.[2,3] However, this model has significant limitations: approximately one-third of 

patients show poor response to dopamine-blocking agents, cognitive symptoms remain largely unresponsive to current 

treatments, and many antipsychotics produce substantial adverse effects.[4,5] 
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The glutamate hypothesis of schizophrenia offers a complementary and increasingly evidence-supported framework for 

understanding disease pathophysiology. This hypothesis posits that hypofunction of the N-methyl-D-aspartate (NMDA) 

receptor, a subtype of ionotropic glutamate receptor crucial for excitatory neurotransmission, represents a core patho-

physiological mechanism in schizophrenia.[6,7] The hypothesis emerged from clinical observations that NMDA recep-

tor antagonists such as phencyclidine (PCP) and ketamine reliably induce schizophrenia-like positive, negative, and 

cognitive symptoms in healthy individuals and can exacerbate symptoms in patients with schizophrenia. 

The transition toward understanding schizophrenia as a disorder of glutamatergic dysfunction has profound implications 

for therapeutics and clinical stratification. Unlike the relatively homogeneous dopaminergic model, glutamatergic path-

ophysiology encompasses multiple mechanistic pathways including NMDA receptor hypofunction, excitatory-inhibi-

tory imbalance, abnormalities in glutamate-glutamine cycling, and potentially autoimmune mechanisms involving anti-

NMDA receptor antibodies.[9,10] These mechanistic subtypes may represent distinct biological phenotypes within the 

schizophrenia spectrum, offering opportunities for precision medicine approaches that match treatment interventions to 

underlying biological mechanisms. 

This comprehensive review synthesizes current evidence regarding the glutamate hypothesis of schizophrenia and artic-

ulates its implications for precision psychiatry. We examine: (1) the neurobiological basis of NMDA receptor hypofunc-

tion and excitatory-inhibitory imbalance; (2) in vivo neuroimaging biomarkers of glutamatergic dysfunction; (3) immu-

nological evidence including anti-NMDA receptor antibodies; (4) relationships between glutamatergic abnormalities 

and symptom severity and treatment response; and (5) emerging pharmacological interventions and biomarker-guided 

therapeutic strategies. 

2. MECHANISMS OF GLUTAMATERGIC DYSFUNCTION IN SCHIZOPHRENIA 

2.1 NMDA Receptor Hypofunction and the "Hypofunction Hypothesis" 

The NMDA receptor is a ligand-gated ion channel that plays a crucial role in synaptic plasticity, learning, and memory 

through calcium-mediated signaling cascades. The receptor requires simultaneous binding of glutamate and a co-agonist 

(glycine or D-serine) at separate binding sites for channel opening and ion influx. The NMDA receptor subunit compo-

sition varies across brain regions and developmental stages, with NR1/NR2A and NR1/NR2B heteromers being the pre-

dominant configurations in adult cortex. 

The NMDA receptor hypofunction hypothesis proposes that reduced NMDA receptor signaling, rather than elevated 

glutamate levels per se, constitutes the primary pathophysiological abnormality in schizophrenia. This hypothesis spe-

cifically draws from the observation that non-competitive NMDA receptor antagonists like ketamine and PCP induce a 

comprehensive symptom profile resembling schizophrenia, including positive symptoms, negative symptoms, cognitive 

deficits, and perceptual abnormalities.[15,16] Critically, the ketamine model not only produces symptoms but also in-

duces neurophysiological and neuroimaging abnormalities remarkably similar to those observed in schizophrenia pa-

tients, providing strong support for the mechanistic relevance of NMDA hypofunction. 

The specific consequences of NMDA receptor hypofunction have been extensively characterized in preclinical models. 

NMDA receptors on fast-spiking, parvalbumin-positive GABAergic interneurons are particularly important for their 

inhibitory function. When NMDA receptors on these interneurons are blocked or hypoactive, GABAergic interneuron 

firing is reduced, leading to disinhibition of downstream pyramidal neurons. This excitatory-inhibitory imbalance repre-

sents a fundamental mechanism by which NMDA hypofunction could generate psychotic and cognitive symptoms. The 

resulting pyramidal neuron hyperactivity may manifest as elevated glutamate release from these excitatory neurons, 

creating the paradoxical situation of clinical NMDA hypofunction coexisting with regional hyperglutamatergic states. 

Postmortem studies have provided evidence for molecular abnormalities of NMDA receptors in schizophrenia. De-

creased phosphorylation of NMDA receptor subunit NR1 at serine 897, a modification that regulates receptor traffick-

ing and synaptic localization, has been documented in postmortem prefrontal cortex of schizophrenia patients. Addition-

ally, altered expression of genes encoding NMDA receptor subunits and associated regulatory proteins has been re-

ported.[23,24] 

2.2 The Excitatory-Inhibitory Imbalance Model 

The excitatory-inhibitory (E-I) imbalance framework provides a comprehensive model for understanding how NMDA 

receptor hypofunction translates into neuronal circuit dysfunction and behavioral symptoms.[25,26] In this model, the 
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normal balance between excitatory glutamatergic neurotransmission and inhibitory GABAergic neurotransmission is 

disrupted, leading to cascading effects on network function. 

The preferential expression of NMDA receptors on GABAergic interneurons versus pyramidal neurons creates a critical 

vulnerability. NMDA receptors on parvalbumin-positive interneurons are particularly important for their local oscilla-

tory activity and network coordination. When these NMDA receptors are hypoactive, GABAergic inhibition of pyrami-

dal neurons is reduced, leading to pyramidal cell disinhibition and excessive glutamate release. 

This disinhibition has been proposed to account for multiple aspects of schizophrenia pathophysiology. First, increased 

pyramidal neuron firing and glutamate release may contribute to positive symptoms through effects on mesolimbic do-

pamine systems. NMDA receptor knockout studies in cortical parvalbumin neurons demonstrate that this manipulation 

produces dopamine system abnormalities reminiscent of schizophrenia, including altered dopamine responses to psy-

chotomimetic drugs. 

Second, E-I imbalance may contribute to cognitive symptoms and working memory deficits through effects on prefron-

tal circuits. GABAergic interneurons are critical for maintaining the oscillatory activity patterns that support working 

memory. Reduced GABAergic inhibition from NMDA dysfunction could disrupt these essential oscillations. 

Third, reduced GABAergic inhibition may manifest as increased background noise in neural circuits, reducing signal-

to-noise ratio and hindering the organism's ability to distinguish relevant from irrelevant information. This phenomenon 

has been proposed to underlie perceptual abnormalities and positive symptoms of schizophrenia. 

2.3 Glutamate-Glutamine Cycling and Metabolic Dysfunction 

The glutamate-glutamine cycle represents an important metabolic relationship between glutamatergic neurons and glial 

cells. In this cycle, synaptically released glutamate is taken up by astrocytes via high-affinity glutamate transporters, 

converted to glutamine by glutamine synthetase, released back to neurons, and reconverted to glutamate by glutami-

nase. The ratio of glutamine to glutamate measured by magnetic resonance spectroscopy (MRS) is thought to reflect the 

efficiency of this cycling process and, by extension, the rate of glutamatergic neurotransmission. 

Studies employing in vivo proton MRS have revealed abnormalities in glutamate-glutamine cycling in schizophre-

nia.[38,39] Elevated glutamine/glutamate ratios have been reported in cerebrospinal fluid and in some brain regions, 

suggesting altered neurotransmitter cycling.[40,41] In first-episode psychosis, a higher glutamine/glutamate ratio has 

been associated with reduced working memory performance, providing a potential link between metabolic dysfunction 

and cognitive symptoms. 

The relationship between glutamine/glutamate ratios and functional outcomes appears complex and may depend on 

brain region and medication status. A landmark structural equation modeling study found that the glutamine/glutamate 

ratio served as an intermediate biomarker linking glutamatergic dysfunction to auditory mismatch negativity (MMN) 

and verbal working memory performance in schizophrenia. These findings suggest that glutamate-glutamine cycling 

abnormalities reflect meaningful variations in glutamatergic neurotransmission with clinical correlates. 

3. NEUROIMAGING EVIDENCE FOR GLUTAMATERGIC DYSFUNCTION 

3.1 Proton Magnetic Resonance Spectroscopy (1H-MRS) Studies 

Proton magnetic resonance spectroscopy provides a non-invasive method to quantify regional brain levels of glutamate, 

glutamine, and GABA in vivo. This technique has substantially advanced our understanding of regional glutamatergic 

abnormalities in schizophrenia and has revealed important relationships between neurochemistry and clinical features. 

3.1.1 Anterior Cingulate Cortex Glutamate in Relation to Treatment Response 

The anterior cingulate cortex (ACC) has emerged as a particularly important region for understanding glutamatergic 

abnormalities in schizophrenia.[45,46] Converging evidence from multiple neuroimaging studies implicates elevated 

ACC glutamate levels as a biomarker for poor treatment response and treatment-resistant schizophrenia. 

A landmark multicenter 1H-MRS study examining 103 first-episode psychosis patients found that baseline anterior cin-

gulate glutamate levels predicted response to initial antipsychotic treatment. Patients with lower ACC glutamate levels 

at baseline were more likely to show clinical improvement with antipsychotic medication. Importantly, ACC glutamate 

levels appeared to normalize following 12 weeks of treatment in responders but remained elevated in non-responders, 

suggesting that ACC glutamate normalization may be mechanistically related to symptomatic improvement. 
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This finding has been replicated and extended in subsequent studies. Demjaha and colleagues examined antipsychotic-

responsive and treatment-resistant patients and found that elevated ACC glutamate levels were specifically associated 

with treatment resistance and were accompanied by normal dopamine function as measured by positron emission to-

mography (PET). This dissociation between glutamatergic and dopaminergic abnormalities in treatment-resistant pa-

tients is particularly important because it suggests that dopamine-blocking antipsychotics may be ineffective when glu-

tamatergic dysfunction is the primary pathological driver. 

More recent work has demonstrated that in treatment-resistant schizophrenia, the normal positive relationship between 

ACC glutamate and ACC connectivity with the fusiform gyrus observed in treatment-responsive patients is absent, sug-

gesting that treatment resistance involves abnormal coupling between glutamatergic neurochemistry and network func-

tion. 

3.1.2 ACC Glutamate and Functional Brain Activity 

Studies combining 1H-MRS with functional MRI (fMRI) have revealed abnormal relationships between ACC gluta-

mate levels and task-induced brain activation in schizophrenia. These studies are particularly valuable because they link 

neurochemistry to functional brain activity, bridging molecular and systems-level understanding. 

Reid and colleagues found a positive association between ACC glutamate levels (measured as glutamate + glutamine, 

Glx) and local blood-oxygen-level-dependent (BOLD) response during a cognitive control task (Stroop task) in medi-

cated schizophrenia patients, whereas this relationship was absent in healthy volunteers. This dissociation suggests that 

glutamatergic levels influence task-related neural responses differently in schizophrenia compared to healthy controls. 

Importantly, Cadena and colleagues examined how antipsychotic medication influences the relationship between ACC 

glutamate and task-induced BOLD response. In unmedicated schizophrenia patients, there was a negative relationship 

between ACC glutamate levels and Stroop-related BOLD response. Remarkably, following six weeks of risperidone 

treatment, this relationship reversed to become positive and began to resemble the healthy control pattern. This medica-

tion-induced reversal of the glutamate-BOLD relationship provides compelling evidence that antipsychotics work in 

part by restoring normal coupling between glutamatergic neurochemistry and functional brain activity. 

Studies examining resting state connectivity have revealed complementary findings. In first-episode psychosis, dorsal 

ACC glutamate is negatively associated with GABAergic inhibition within the ACC, such that as glutamate increases, 

GABAergic inhibitory activity decreases. Dorsal ACC glutamate levels differentially predict ACC connectivity to dis-

tributed brain regions in patients compared to healthy controls, with more positive relationships to the bilateral supra-

marginal gyrus, superior precuneus, and left angular gyrus in patients. 

3.1.3 Hippocampal and Other Regional Glutamatergic Abnormalities 

While the ACC has received the most intensive investigation, glutamatergic abnormalities have been documented in 

other brain regions with functional relevance to schizophrenia. Left hippocampal glutamate-glutamine levels were 

found to show differential relationships with resting state functional connectivity to entorhinal and orbital frontal corti-

ces in first-episode psychosis compared to healthy volunteers. Specifically, the relationship between hippocampal Glx 

and connectivity to these regions was positive in healthy volunteers but negative in first-episode patients, suggesting 

region-specific abnormalities in how glutamatergic levels influence network organization. 

Left dorsolateral prefrontal cortex (DLPFC) glutamate levels show an interesting dissociation by medication status. In 

unmedicated schizophrenia patients, DLPFC glutamate is positively associated with local BOLD response during work-

ing memory tasks, whereas this relationship is absent in both medicated patients and healthy controls. This finding sug-

gests that antipsychotic medication normalizes DLPFC glutamate-BOLD relationships, consistent with a normalization 

mechanism of action. 

3.2 GABA-Glutamate Interactions and Excitatory-Inhibitory Balance 

While glutamate represents the primary excitatory neurotransmitter, GABA represents the primary inhibitory neuro-

transmitter, and their balance is fundamental to neural circuit function. 1H-MRS studies examining both glutamate and 

GABA simultaneously reveal important insights into excitatory-inhibitory balance in schizophrenia. 
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Multiple studies have found that ACC GABA shows abnormal relationships with functional connectivity and neural 

activity in schizophrenia. In healthy volunteers, ACC GABA is negatively associated with resting state functional con-

nectivity to the posterior cingulate cortex and other default mode regions.[55,56] However, this negative relationship is 

diminished or absent in medicated schizophrenia patients. 

During cognitive control tasks, ACC GABA in healthy volunteers is negatively associated with task-evoked BOLD re-

sponse (reflecting inhibitory modulation of task-irrelevant activity), whereas in schizophrenia patients, this relationship 

becomes more positive or is eliminated. This abnormality is most pronounced at 7 Tesla, suggesting that it reflects more 

localized neurochemical effects. 

These findings collectively suggest that schizophrenia involves fundamental abnormalities in how GABA and glutamate 

interact to regulate brain network function. The loss of normal negative relationships between GABA and neural activ-

ity may reflect impaired inhibitory control over pyramidal neuron activity, consistent with the E-I imbalance frame-

work. 

3.3 Glutamatergic Biomarkers and Network Dysfunction 

Emerging evidence indicates that glutamatergic abnormalities in schizophrenia are not limited to local neurochemical 

effects but instead reflect broader network-level dysfunction. The anterior cingulate cortex is a critical node in three 

major functional networks: the default mode network (DMN), the central executive network (CEN), and the salience 

network (SN). Abnormal ACC glutamate levels may disrupt the normal anti-correlation between DMN and CEN activ-

ity, a fundamental property of healthy brain organization. 

The disruption of network-level glutamatergic regulation has been proposed to contribute to core symptoms of schizo-

phrenia. The "three-network model" suggests that abnormal functioning of the SN (which includes the ACC) leads to 

inappropriate switching between task-positive and task-negative networks, potentially contributing to the difficulty pa-

tients with schizophrenia have in flexibly attending to internal versus external stimuli. Elevated ACC glutamate may 

exacerbate this network dysfunction through multiple mechanisms including altered pyramidal neuron activity and re-

duced GABAergic inhibition. 

4. AUTOIMMUNITY AND ANTI-NMDA RECEPTOR ANTIBODIES 

4.1 Evidence for Anti-NMDA Receptor Antibodies in Schizophrenia 

While NMDA receptor hypofunction has been primarily conceptualized as resulting from genetic or developmental fac-

tors, recent evidence suggests that acquired autoimmunity against NMDA receptors may contribute to schizophrenia 

pathogenesis in a subset of patients.[60,61] 

A landmark study by Tong and colleagues examined serum anti-NMDA receptor (anti-NMDAR) antibody levels in 110 

first-episode psychosis patients and 50 healthy controls. First-episode patients exhibited significantly elevated serum 

anti-NMDAR antibodies compared to healthy controls (9.2  ±3.5 ng/ml versus 7.3  ±2.9 ng/ml, p = 0.002). Remarkably, 

serum anti-NMDAR antibody levels were positively correlated with Positive and Negative Syndrome Scale (PANSS) 

positive, negative, and total symptom scores. Furthermore, antibody levels were inversely correlated with cognitive per-

formance across multiple domains including verbal learning and memory, working memory, and speed of processing, 

with the strongest correlation observed for overall cognitive composite scores. 

These findings suggest that anti-NMDAR antibodies represent a novel biomarker for schizophrenia severity and may be 

mechanistically involved in both psychotic and cognitive symptomatology. The mechanisms by which anti-NMDAR 

antibodies impair function are increasingly understood from studies of autoimmune NMDAR encephalitis. Antibody 

binding to NMDAR leads to receptor internalization and cross-linking, resulting in receptor loss from the neuronal sur-

face and NMDA hypofunction.[63,64] Additionally, antibody-mediated signaling through antibody Fc regions may acti-

vate complement and cell-mediated immune responses causing neuronal damage. 

4.2 Pathogen-Associated NMDAR Autoimmunity 

An intriguing question concerns the etiology of anti-NMDAR antibodies in schizophrenia. While some patients may 

have primary autoimmunity, evidence suggests that pathogenic infections may trigger anti-NMDAR autoimmun-

ity.[66,67] Toxoplasma gondii infection has been epidemiologically associated with schizophrenia in multiple stud-

ies.[68,69] Molecular evidence suggests potential mechanisms for this association: T. gondii peptide sequences show 
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homology with NMDAR epitopes, and infected animals develop anti-NMDAR antibodies and show behavioral abnor-

malities.[66,70] 

Similarly, herpes simplex virus-1 (HSV-1) infection has been associated with anti-NMDAR antibody generation. These 

pathogen associations suggest that schizophrenia in some patients may result from infectious triggers of autoimmunity, 

creating a potential opportunity for etiological diagnosis and targeted prevention strategies. 

4.3 Implications of Autoimmunity for Precision Psychiatry 

The discovery of anti-NMDAR antibodies in schizophrenia has profound implications for clinical practice and treat-

ment selection. A case report documented a schizophrenia patient with anti-NMDAR antibodies who underwent plas-

mapheresis to reduce antibody levels. Following antibody reduction and subsequent treatment with corticosteroids, the 

patient experienced dramatic clinical improvement within three weeks and maintained improvement at seven-month 

follow-up without antipsychotic medications. This single case suggests that immunotherapy may be beneficial in anti-

body-positive patients and raises the possibility that routine anti-NMDAR antibody screening could identify a therapeu-

tic opportunity missed by conventional psychiatric care. 

However, important caveats and unanswered questions remain. The prevalence of clinically significant anti-NMDAR 

antibodies in schizophrenia populations requires further characterization. The heterogeneity in findings regarding anti-

body prevalence across studies may reflect differences in methodology, antibody detection techniques, and patient pop-

ulations.[73,74] Standardization of antibody detection and prospective studies of treatment outcomes based on antibody 

status are needed to establish clinical utility. 

5. RELATIONSHIPS BETWEEN GLUTAMATERGIC DYSFUNCTION AND SCHIZOPHRENIA 

SYMPTOMS 

5.1 Glutamate and Positive Symptoms 

The relationship between glutamatergic dysfunction and positive symptoms has been extensively examined through 

both clinical and preclinical approaches. The ketamine model has proven particularly useful for understanding this rela-

tionship. When administered to healthy volunteers, ketamine reliably induces positive symptoms including hallucina-

tions, delusions, and perceptual distortions within minutes.[75,76] These ketamine-induced symptoms are accompanied 

by increased glutamatergic levels in some brain regions and by activation of the ACC and other key brain regions in-

volved in emotion and perception. 

The excitatory-inhibitory imbalance hypothesis provides a mechanistic explanation for positive symptoms. Reduced 

GABAergic inhibition of pyramidal neurons following NMDA receptor hypofunction leads to pyramidal cell hyperac-

tivity and excessive glutamate release. This excess glutamate, particularly in mesolimbic and mesocortical circuits, may 

drive aberrant dopamine release and contribute to positive symptoms. 

Support for this mechanism comes from studies showing that NMDAR knockout in cortical and hippocampal parvalbu-

min interneurons produces dopamine phenotypes characteristic of schizophrenia, including altered sensitivity to psy-

chotomimetic drugs. Additionally, administration of agents that enhance GABAergic transmission can attenuate keta-

mine-induced positive symptoms, suggesting that restoring GABAergic inhibition may alleviate symptoms resulting 

from NMDA hypofunction. 

5.2 Glutamate and Cognitive Deficits 

Cognitive impairment represents a defining feature of schizophrenia and a primary determinant of functional outcome. 

Cognitive deficits in schizophrenia include impairments in processing speed, working memory, verbal learning and 

memory, and executive function. The glutamate hypothesis provides compelling explanations for these cognitive defi-

cits. 

NMDA receptors are critical for synaptic plasticity mechanisms including long-term potentiation (LTP) and long-term 

depression (LTD), which are fundamental to learning and memory. NMDA receptors are particularly important in hip-

pocampal and prefrontal cortical circuits that support cognitive function. NMDA receptor hypofunction would be ex-

pected to impair these synaptic plasticity mechanisms and consequently impair learning, memory formation, and work-

ing memory maintenance. 

Anadolu Psikiyatri Dergisi || ISSN: 1302-6631 || Volume 27; Number 1

Page 205

https://doi.org/10.5281/zenodo.18400986



 

 

The finding that serum anti-NMDAR antibody levels are negatively correlated with cognitive performance across multi-

ple domains directly supports a role of NMDA dysfunction in cognitive impairment. The structural equation modeling 

study linking glutamine/glutamate ratios to MMN and working memory performance provides additional evidence for a 

mechanistic relationship between glutamatergic dysfunction and cognitive deficits. 

GABAergic dysfunction secondary to NMDA hypofunction also contributes to cognitive impairment. Parvalbumin-

positive GABAergic interneurons are critical for generating the oscillatory activity patterns in prefrontal cortex that sup-

port working memory.[86,87] Reduced GABAergic inhibition of pyramidal neurons would disrupt these essential oscil-

lations and impair working memory function. 

5.3 Glutamate and Negative Symptoms 

Negative symptoms of schizophrenia, including reduced emotional expressivity, motivation, and social engagement, are 

particularly treatment-resistant and contribute substantially to disability. The relationship between glutamatergic dys-

function and negative symptoms is less well characterized than for positive or cognitive symptoms, but emerging evi-

dence suggests important connections. 

In the ketamine model, NMDA antagonism produces negative symptoms alongside positive symptoms. At the neural 

level, ketamine-induced reductions in activity in the subgenual anterior cingulate cortex and effects on reward-related 

circuits may contribute to negative symptoms. The role of glutamate in modulating dopamine release in prefrontal cor-

tex, which influences motivation, suggests that glutamatergic dysfunction could impair motivational systems. 

The finding that anti-NMDAR antibody levels are positively correlated with PANSS negative symptom subscores pro-

vides evidence that NMDAR dysfunction is associated with negative symptom severity. The mechanisms may involve 

both direct effects of NMDA hypofunction on motivation-related circuits and indirect effects through dopaminergic sys-

tems.wl 

6. CURRENT PHARMACOLOGICAL INTERVENTIONS TARGETING GLUTAMATE 

6.1 Approaches to Glutamate System Modulation 

Given the evidence for glutamatergic dysfunction in schizophrenia, multiple pharmacological approaches have been 

pursued to modulate the glutamate system therapeutically. These approaches can be categorized into several mechanis-

tic strategies: 

6.1.1 NMDA Receptor Co-agonist Enhancement 

One approach to enhance NMDA receptor function is to increase availability of the co-agonist glycine or D-serine. Gly-

cine transporters, particularly glycine transporter-1 (GlyT-1), regulate synaptic and extrasynaptic glycine levels. GlyT-1 

inhibitors such as bitopertin were developed to increase available glycine and enhance NMDA receptor signaling. 

Clinical trials of bitopertin as an adjunctive treatment to antipsychotics showed modest benefits in negative symptoms 

in some studies, though results were mixed and development has been discontinued. Similar results were observed with 

other glycine enhancing strategies, suggesting that while co-agonist enhancement has theoretical appeal, clinical effi-

cacy may be limited. 

6.1.2 Metabotropic Glutamate Receptor Modulation 

Metabotropic glutamate receptors (mGluRs), which couple to G-proteins rather than forming ion channels, represent 

another therapeutic target. Group II mGluR positive allosteric modulators were developed based on preclinical evidence 

that enhancing mGluR2/3 signaling could normalize glutamatergic tone. 

LY2140023, a prodrug of the mGluR2/3 positive allosteric modulator LY2165163, demonstrated efficacy comparable to 

olanzapine in some Phase 2 clinical trials. However, subsequent Phase 3 trials failed to demonstrate superiority over 

placebo, and development was discontinued. Postmortem studies of mGluR2/3 density in schizophrenia have yielded 

mixed results, possibly contributing to variable clinical efficacy. 

6.1.3 NMDA Receptor Channel Modulators 

Memantine, an NMDA receptor open-channel blocker with partial antagonist properties, was investigated as an adjunc-

tive treatment in schizophrenia. The theoretical basis was that memantine might attenuate excessive glutamate signaling 
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while preserving physiological signaling patterns. Clinical trials showed modest benefits when added to antipsychotics, 

but results were inconsistent and memantine has not been widely adopted. 

6.2 Ketamine as Rapid-Acting Antipsychotic and Pro-Cognitive Agent 

Ketamine, the very compound whose NMDA-blocking properties led to the glutamate hypothesis, has emerged as an 

unexpected therapeutic candidate in schizophrenia. This apparent paradox—using an NMDA antagonist to treat a disor-

der characterized by NMDA hypofunction—has prompted important reconsideration of glutamate system dysfunction 

in schizophrenia. 

Several mechanistic explanations have been proposed for ketamine's therapeutic potential:[106,107] 

1. Compensatory mechanisms: Chronic ketamine administration, unlike acute administration, may engage com-

pensatory mechanisms that ultimately restore normal glutamate signaling. 

2. Circuit-specific effects: Ketamine's effects on different neuronal populations and circuits may be complex, 

with acute negative effects in some circuits balanced by downstream adaptations. 

3. Rapid synaptogenesis: Ketamine has been shown to rapidly promote synaptogenesis and increase brain-de-

rived neurotrophic factor (BDNF) signaling, potentially facilitating restoration of damaged circuits. 

4. Neuroinflammation reduction: Ketamine may exert therapeutic effects through anti-inflammatory mechanisms 

that complement glutamate-targeted interventions. 

Several small clinical trials and case reports have described rapid antipsychotic and anti-depressant effects of ketamine 

in treatment-resistant patients, though more rigorous trials are needed to establish efficacy and optimal dosing.[110,111] 

The potential of ketamine-like compounds with improved safety profiles (such as esketamine or other NMDA modula-

tors) represents an important avenue for future research. 

7. GLUTAMATERGIC BIOMARKERS FOR PRECISION PSYCHIATRY 

7.1 The Biomarker-Guided Treatment Selection Framework 

The glutamate hypothesis predicts that patients with primarily glutamatergic dysfunction should be preferentially re-

sponsive to glutamate-targeted interventions, while patients with primarily dopaminergic dysfunction should remain 

responsive to dopamine-blocking antipsychotics.[112,113] This prediction suggests a framework for precision psychia-

try in which neurobiological characterization guides treatment selection. 

The logical extension of this framework is as follows: (1) Identify biomarkers that distinguish glutamatergic from dopa-

minergic phenotypes; (2) use baseline biomarkers to predict treatment response; (3) match treatments to phenotypes; 

and (4) monitor biomarker changes to assess target engagement and adjust treatment accordingly. 

7.2 ACC Glutamate as a Treatment Response Biomarker 

The most compelling evidence for biomarker-guided treatment selection comes from studies of ACC glutamate levels. 

The multisite OPTiMiSE study demonstrated that baseline ACC glutamate levels predict response to initial antipsy-

chotic treatment in first-episode psychosis. Patients with elevated ACC glutamate at baseline showed poor response to 

risperidone, while those with lower levels showed good response. 

This finding suggests a practical clinical application: baseline 1H-MRS ACC glutamate measurement could be used to 

predict which first-episode patients are likely to respond to dopamine-blocking antipsychotics and which might require 

alternative strategies (such as glutamate-targeted interventions, if available, or earlier consideration of more intensive 

treatment). 

The mechanism underlying ACC glutamate-based treatment prediction is likely related to treatment target engagement. 

Dopamine-blocking antipsychotics normalize dopaminergic dysfunction but do not directly target glutamate systems. In 

patients whose pathology is primarily driven by dopaminergic abnormalities, dopamine blockade produces clinical im-

provement. In patients with primary glutamatergic dysfunction (reflected in elevated ACC glutamate), dopamine-tar-

geted treatment is less effective, and alternative interventions targeting glutamate directly are theoretically more appro-

priate. 
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7.3 Glutamine-Glutamate Ratio as a Marker of Metabolic Dysfunction 

The glutamine/glutamate ratio measured by 1H-MRS serves as an in vivo marker of glutamate-glutamine cycling effi-

ciency. Studies have found abnormalities in this ratio across schizophrenia and have linked it to cognitive dysfunction. 

The mechanistic meaning of abnormal ratios may reflect either reduced glutaminase expression (impaired reconversion 

of glutamine to glutamate) or increased glutamate uptake and conversion to glutamine (compensatory responses to ele-

vated synaptic glutamate). 

The finding that glutamine/glutamate ratios predict cognitive performance through an intermediate effect on MMN sug-

gests that this biomarker captures meaningful variations in glutamatergic neurotransmission with clinical correlates. 

However, the clinical utility of glutamine/glutamate ratios requires further validation and prospective studies linking 

ratios to treatment response and longitudinal outcomes. 

7.4 Anti-NMDAR Antibodies as a Biomarker for Immunotherapy Responsiveness 

Anti-NMDAR antibody positivity represents a fundamentally different etiology than primary neurodevelopmental 

NMDA hypofunction, suggesting that these patients might respond preferentially to immunotherapy.[117,118] While 

case reports of immunotherapy responsiveness exist, systematic screening and treatment studies are needed to establish 

clinical utility. 

A practical precision psychiatry strategy would involve: (1) screening serum anti-NMDAR antibody levels in all first-

episode psychosis patients or at least those with atypical presentations or poor initial response to antipsychotics; (2) 

considering immunotherapy (corticosteroids, plasmapheresis, and/or intravenous immunoglobulin) as a targeted inter-

vention in antibody-positive patients; and (3) monitoring antibody levels and clinical response to assess treatment effi-

cacy. 

7.5 Neurophysiological Biomarkers 

Event-related potential components, particularly mismatch negativity (MMN) and P300, show robust abnormalities in 

schizophrenia and are thought to reflect NMDA receptor function.[119,120] MMN is reduced in amplitude in schizo-

phrenia patients and shows particularly strong relationships to cognitive dysfunction. The ketamine model reproducibly 

reduces MMN amplitude, supporting NMDA receptor involvement in MMN generation. 

The finding that frontal glutamate level directly correlates with MMN amplitude suggests that MMN could serve as a 

non-invasive proxy biomarker for regional glutamate levels. MMN requires no complex equipment beyond standard 

electroencephalography and is considerably less expensive and more accessible than 1H-MRS, suggesting potential for 

clinical utility in resource-limited settings. 

8. INTEGRATION WITH DOPAMINE HYPOTHESIS AND MULTI-SYSTEM DYSFUNCTION 

8.1 The Dopamine-Glutamate Interaction 

Rather than replacement of the dopamine hypothesis by a glutamate hypothesis, accumulating evidence suggests that 

these systems interact intimately in schizophrenia pathophysiology.[123,124] The discovery of dopamine-glutamate 

dysregulation in treatment-resistant schizophrenia, with elevated glutamate but normal dopamine function, suggests that 

the two systems can be dissociated. 

At the mechanistic level, NMDA receptor hypofunction produces alterations in dopamine signaling through multiple 

pathways. NMDA receptors on GABAergic interneurons regulate inhibition of dopaminergic neurons, and NMDA 

hypofunction reduces this inhibition, leading to increased dopamine neuron activity.[125,126] This provides a direct 

link between glutamate and dopamine dysfunction in schizophrenia. 

Conversely, dopamine influences glutamatergic circuit function through dopamine receptors on glutamatergic neurons 

and on GABAergic interneurons. This suggests that dopamine-targeted antipsychotics may have effects on glutama-

tergic circuits, though the clinical significance of these effects remains unclear. 

8.2 Network-Level Integration 

Understanding schizophrenia requires integration across multiple levels of organization—from molecular (neurotrans-

mitter systems) to systems (network connectivity) to behavioral (symptoms and functioning). Glutamatergic dysfunc-

tion in the ACC propagates through distributed brain networks to produce multi-system abnormalities. 
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The "three-network model" highlights how ACC dysfunction, driven by glutamatergic abnormalities, disrupts the nor-

mal functional organization of default mode, central executive, and salience networks.[131,132] This disruption impairs 

the normal switching between task-focused and internally-focused cognition, potentially contributing to positive symp-

toms (internally-generated thoughts perceived as external) and negative symptoms (reduced goal-directed activity). 

8.3 Developmental and Environmental Factors 

While glutamatergic and dopaminergic dysfunction represent important mechanistic drivers of schizophrenia symp-

toms, they likely arise from a combination of genetic vulnerabilities, neurodevelopmental factors, and environmental 

stressors.[134,135] Genetic studies have identified risk variants in genes encoding glutamate receptor subunits, gluta-

mate transporters, and glutamate metabolic enzymes. 

Environmental factors including prenatal infections, cannabis use during adolescence, and psychosocial stress can per-

turb glutamatergic circuits during critical developmental windows.[137,138,139] Integration of multi-level biological 

and environmental data will be essential for comprehensive precision psychiatry. 

9. FUTURE DIRECTIONS AND CHALLENGES 

9.1 Standardization of Biomarker Acquisition and Analysis 

A major impediment to clinical implementation of glutamatergic biomarkers is lack of standardization in acquisition 

and analysis protocols. Different studies use different MRS sequences, voxel locations, tissue correction approaches, 

and statistical methods, making cross-study comparison and meta-analysis difficult. 

Recent consensus recommendations for 1H-MRS acquisition and analysis provide a framework for standardization. 

Widespread adoption of these recommendations will be essential for establishing clinical utility and generalizability of 

findings. Multi-site collaborative studies using standardized protocols are urgently needed. 

9.2 Longitudinal Studies and Prospective Prediction 

Most evidence linking glutamatergic biomarkers to clinical outcomes comes from cross-sectional or retrospective anal-

yses. Prospective longitudinal studies that use baseline biomarkers to predict treatment response are needed to establish 

true predictive validity. Such studies should include: 

 Multiple assessment time points with biomarker measurements at baseline, early treatment phases, and follow-

up 

 Clinical assessment using standardized instruments 

 Treatment outcome assessment including symptom response, side effects, and functional outcomes 

 Investigation of whether biomarker-guided treatment selection improves outcomes compared to standard care 

9.3 Development of Accessible Biomarkers 

Many glutamatergic biomarkers (1H-MRS, PET imaging) are expensive and require specialized equipment limiting ac-

cessibility. Development of more accessible biomarkers such as peripheral biological markers or smartphone-based cog-

nitive tests could greatly facilitate clinical translation. 

Blood-based biomarkers including anti-NMDAR antibodies, cytokines, and other immune markers may provide a more 

accessible and objective assessment of schizophrenia subtypes. Validation of these peripheral markers as proxies for 

central glutamatergic dysfunction is a priority. 

9.4 Clinical Trial Design for Precision Psychiatry 

Testing the clinical utility of precision psychiatry requires carefully designed clinical trials that assess whether bi-

omarker-guided treatment selection improves outcomes compared to standard care.[144,145] Such trials face methodo-

logical challenges including: 

 Need for enrichment strategies that select populations with particular biomarker profiles 

 Need for sufficient sample sizes to detect treatment-by-biomarker interactions 

 Need for long-term follow-up to assess sustainability of benefits 
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 Need to incorporate patient preference and shared decision-making 

Adaptive trial designs that allow modification of treatment recommendations based on accumulating evidence may be 

particularly valuable for precision psychiatry research. 

9.5 Integration with Technology and Digital Phenotyping 

Digital phenotyping—the collection of high-dimensional behavioral data through smartphones and wearable devices—

offers opportunities to comprehensively characterize schizophrenia phenotypes and track treatment response. Integra-

tion of digital phenotyping with neurobiological biomarkers could provide more complete patient characterization and 

enable truly personalized treatment selection. 

10. CLINICAL IMPLEMENTATION: A PROPOSED PRECISION PSYCHIATRY FRAME-

WORK 

Based on current evidence, we propose a practical framework for implementing precision psychiatry approaches based 

on glutamatergic biomarkers in clinical settings: 

10.1 Assessment Phase 

Initial evaluation should include: 

 Comprehensive clinical assessment including symptom profile (positive, negative, cognitive) 

 Assessment of treatment history and prior response/non-response 

 Screening for risk factors suggesting autoimmune etiology (acute onset, atypical features, concurrent medical 

conditions) 

Biomarker assessment should include: 

 Serum anti-NMDAR antibody levels (increasingly accessible and relatively inexpensive) 

 Optional: 1H-MRS assessment of ACC glutamate and GABA (for specialized centers with MRS capability) 

 Optional: neurophysiological assessment of MMN (particularly in cognitive research settings) 

10.2 Stratification Phase 

Based on clinical and biomarker findings, patients are stratified into phenotypic groups: 

 Antibody-positive phenotype: Consider immunotherapy alongside or instead of antipsychotics 

 High ACC glutamate phenotype: Higher likelihood of dopamine-resistant psychosis; consider early combina-

tion therapy or glutamate-targeted agents if available 

 Standard phenotype: Responsive to conventional antipsychotic treatment 

10.3 Treatment Selection Phase 

 Antibody-positive patients: Immunotherapy (corticosteroids, plasmapheresis, IVIG) with close clinical moni-

toring 

 High glutamate/treatment-resistant patients: Early combination therapy (multiple antipsychotics, augmentation 

strategies) or enrollment in clinical trials testing glutamate-targeted interventions 

 Standard patients: Evidence-based antipsychotic monotherapy with careful attention to side effects and cogni-

tive outcomes 

10.4 Monitoring Phase 

 Clinical response assessment: Regular measurement of symptom severity, cognitive function, and side effects 
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 Biomarker reassessment: 1H-MRS glutamate reassessment at 8-12 weeks to assess whether glutamate levels 

are normalizing with treatment 

 Treatment adjustment: If inadequate response and glutamate remains elevated, consider augmentation or 

switching strategies 

 Long-term follow-up: Sustained clinical monitoring to assess durability of response and relapse prevention 

11. CONCLUSION 

The glutamate hypothesis of schizophrenia has evolved from a neurochemical curiosity to a central framework for un-

derstanding schizophrenia pathophysiology and translating this understanding into precision medicine approaches. Con-

vergent evidence from neuroimaging, immunology, neurophysiology, and pharmacology supports the role of NMDA 

receptor hypofunction and excitatory-inhibitory imbalance in schizophrenia pathogenesis. 

Most compellingly, anterior cingulate cortex glutamate levels have emerged as a biomarker for treatment response, with 

elevated glutamate predicting poor response to dopamine-blocking antipsychotics and normalizing in treatment re-

sponders. This finding suggests that neurobiological characterization of glutamatergic dysfunction could guide treat-

ment selection, moving the field toward precision psychiatry. 

The discovery of anti-NMDAR antibodies in schizophrenia patients opens a fundamentally different therapeutic ave-

nue—immunotherapy—for a subset of patients. Prospective studies screening antibody status and testing immunother-

apy outcomes are urgently needed. 

Multiple challenges remain before glutamatergic biomarkers can be widely implemented in clinical practice, including 

standardization of biomarker acquisition, validation through prospective studies, development of more accessible bi-

omarkers, and demonstration of clinical utility in trials comparing biomarker-guided to standard treatment. 

Despite these challenges, the glutamate hypothesis represents a paradigm shift in schizophrenia research and practice. 

By understanding schizophrenia as arising from multiple biological mechanisms—with glutamatergic dysfunction rep-

resenting one important pathway—we move toward more specific, effective, and personalized treatments. This preci-

sion psychiatry approach has potential to improve outcomes for the millions of people worldwide affected by schizo-

phrenia. 
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