

CHANGES IN SYNOVIAL FLUID COMPOSITION AND VOLUME IN ATHLETES EXERCISE-INDUCED ADAPTATIONS, JOINT HOMEOSTASIS, AND PERFORMANCE IMPLICATIONS – A REVIEW

Tamara Korohod¹, Paulina Ramaneckaite², Martyna Pietrzak-Chmiel³, Agnieszka Binkiewicz⁴, Ilona Tadulewicz⁵, Maksym Skoryi⁶, Sylwia Łatkowska⁷, Maciej Ślesik⁸, Aleksandra Pawlik⁹, Aleksandra Pudzianowska¹⁰

1. NZOZ "Orto-med", Sierpc, PL; <https://orcid.org/0009-0004-4924-3844>
2. Medical University of Gdańsk, PL; <https://orcid.org/0009-0003-1902-2613>
3. Ks. J. Popiełuszki Bielanski Hospital in Warsaw, PL; <https://orcid.org/0009-0000-3741-6550>
4. Medical University of Gdańsk, PL; <https://orcid.org/0009-0006-7876-3755>
5. University Clinical Centre in Gdańsk, PL; <https://orcid.org/0009-0000-7742-5320>
6. NZOZ "Orto-med", Sierpc, PL; <https://orcid.org/0009-0009-4196-9452>
7. NZOZ Zdrowie Plus Non-Public Health Care Center, Warsaw, PL; <https://orcid.org/0009-0004-1251-6554>
8. Ks. J. Popiełuszki Bielanski Hospital in Warsaw, PL; <https://orcid.org/0009-0008-5021-8741>
9. Ropczyce Healthcare Center, Department of Internal Medicine, PL; <https://orcid.org/0009-0002-0230-2750>
10. Polish Mothers Health Center Institute, Łódź, PL; <https://orcid.org/0009-0009-6959-578X>

ABSTRACT

Background: Exercise fundamentally alters the biochemical environment of synovial joints. Single exercise bouts trigger acute increases in synovial fluid volume and inflammatory markers, while consistent training appears to enhance synovial fluid viscosity and hyaluronic acid production, improved shock absorption, and a shift toward anti-inflammatory dominance protective of cartilage.

Objective: To synthesize contemporary evidence on exercise-induced changes in synovial fluid composition and volume, evaluate the underlying mechanisms that preserve joint function during athletic activity, and provide evidence-based recommendations for athletes and clinicians seeking to optimize long-term joint health.

Methods: A comprehensive literature search was conducted using PubMed, PubMed Central, Scopus, and Web of Science through January 2026, with emphasis on randomized controlled trials, mechanistic studies, and systematic reviews examining synovial fluid parameters and joint-specific outcomes in athletic populations.

Results: Exercise stimulates hyaluronic acid synthesis in the synovial membrane, resulting in measurable increases in synovial fluid volume and viscosity that vary with exercise intensity and joint-specific factors.[1,2,3] Pro-inflammatory cytokines, including interleukin-6, tumor necrosis factor-alpha, and interleukin-1-beta, rise acutely but resolve within 7 days in structurally healthy joints.[2,3,16] Chronic training over 4-12 weeks appears to enhance synovial fluid viscosity and shift the synovial cytokine profile toward anti-inflammatory dominance, improvements consistent with elevated HA metabolism based on mechanistic studies and cross-sectional observations.[3,4] High-impact exercise produces greater synovial fluid changes than low-impact modalities but provides superior long-term joint protection in healthy athletes.[12]

Conclusions: Exercise-induced joint inflammation is a physiological adaptation signal rather than pathological damage. Appropriately dosed training with adequate recovery produces lasting improvements in synovial fluid quality, protecting articular cartilage and extending athletic longevity.

Keywords: synovial fluid, exercise adaptation, hyaluronic acid, joint homeostasis, cartilage biomarkers, athletic performance, musculoskeletal rehabilitation.

1. INTRODUCTION

The synovial joint represents a sophisticated biological system engineered for mechanical function and metabolic stability. Central to this system is synovial fluid—a specialized secretion produced by the synovial membrane that serves dual roles as both a lubricant between articular surfaces and a nutrient delivery system to avascular cartilage.[1,2,5] The composition and volume of this fluid directly determine joint resilience and longevity.

For decades, a mechanistic model dominated clinical thinking: exercise imposes mechanical stress on joints; stress provokes inflammation; inflammation damages tissue; therefore, athletes should minimize joint loading to preserve cartilage. This paradigm has undergone substantial revision. Contemporary research reveals a fundamentally different picture: appropriately dosed exercise triggers adaptive changes in synovial fluid that enhance protective mechanisms rather than initiate degenerative processes.[1,2,3] Studies of long-term runners and athletes document that persistent mechanical loading, when properly dosed with adequate recovery, actually strengthens cartilage rather than degrading it.[10,15]

Exercise appears to rapidly upregulate hyaluronic acid synthesis in animal models and cell culture systems... Over weeks and months of consistent training, these acute responses may accumulate into stable adaptations that strengthen the joint's capacity to withstand mechanical loading, as evidenced by improved function and longevity in trained athletes.[2,3,4,11]

Understanding these mechanisms has practical implications for athletes, coaches, and sports medicine practitioners. Knowledge of how joints respond to loading enables informed decisions regarding training intensity, recovery timing, and load progression. Clinicians can differentiate normal exercise-induced inflammation from pathological inflammation characteristic of degenerative joint disease. Researchers can identify training approaches that optimize both performance and long-term joint health.

This review integrates recent evidence on synovial fluid responses to exercise, examines the timeline of acute and chronic adaptations, and provides evidence-based guidance for preserving joint health throughout athletic careers.

2. JOINT ANATOMY AND SYNOVIAL FLUID PHYSIOLOGY

2.1. The Synovial Membrane and Fluid Production

The synovium is a thin, vascularized tissue lining the inner surface of the joint capsule, consisting of functionally distinct layers. The intimal layer—measuring only 1–4 cells in thickness—contains type A synoviocytes, which function as resident macrophages and provide immune surveillance, and type B synoviocytes, which serve as the principal architects of synovial fluid itself.[1,2] Deeper layers harbor blood vessels, lymphatic channels, fibroblasts, and immune cells that sustain the continuous synthesis and secretion required for joint function.

A healthy knee joint contains approximately 1–3 milliliters of synovial fluid distributed across a remarkably thin space (0.1–0.25 millimeters) between articular cartilage surfaces.[1] Despite this modest volume, synovial fluid composition is precisely regulated. The fluid is approximately 95% water, with the remaining 5% comprising electrolytes, proteins, and large molecular entities, including hyaluronic acid and proteoglycan-4 (lubricin), which confer the fluid's distinctive rheological and protective properties.[1,2] Proteoglycan-4 (PRG4), also known as lubricin, represents another critical synovial macromolecule essential for joint homeostasis and lubrication. Secreted by superficial zone chondrocytes and synovial fibroblasts, PRG4 is a mucinous glycoprotein present in synovial fluid in healthy joints.[26] Despite its lower molar concentration compared with HA, PRG4 serves as a primary boundary lubricant, with its characteristic "bottle-brush" structure reducing the coefficient of friction between cartilage surfaces even more effectively than HA alone.[24] Beyond its mechanical lubricating role, recent evidence reveals that PRG4 exerts significant biological functions: it binds toll-like receptors (TLR2 and TLR4) on immune cells, suppressing pro-inflammatory signaling through NF- κ B inhibition, and demonstrates an inverse relationship with inflammatory cytokines.[25] In healthy joints, higher PRG4 concentrations correlate with lower inflammatory burden, whereas in injured or osteoarthritic joints, PRG4 concentrations decline as inflammatory cytokines (TNF- α , IL-1 β) increase.[25] This makes PRG4 concentration a sensitive biomarker of both mechanical lubrication adequacy and anti-inflammatory joint homeostasis.

2.2. Hyaluronic Acid: Structure, Function, and Regulation

Hyaluronic acid (HA) is a high-molecular-weight polysaccharide synthesized by type B synoviocytes in response to joint motion and mechanical loading.[1,2,3] In healthy joints, HA concentration typically ranges from 1.0 to 4.0 mg/mL. Individual HA molecules are exceptionally large—ranging from 1 to 10 megadaltons—consisting of thousands of disaccharide units (glucuronic acid and N-acetylglucosamine) arranged in linear chains.

This molecular architecture confers multiple essential properties. First, HA exhibits viscoelasticity: it forms a gel-like matrix that deforms and compresses without rupturing, permitting effective energy absorption while maintaining lubrication. Second, HA possesses extraordinary hydrophilicity, binding water molecules and maintaining synovial fluid volume and viscosity.[8] Third, HA reduces the coefficient of friction between cartilage surfaces more effectively than conventional synthetic lubricants, with both molecular concentration and chain length contributing to lubrication efficacy.[1,3,8]

Beyond mechanical effects, HA exerts significant biological effects. It stabilizes the cartilage matrix by binding proteoglycans, such as aggrecan, and functions as a structural scaffold that maintains cartilage hydration and mechanical properties.[1,2,3] HA also modulates inflammation by binding to receptors (CD44 and RHAMM) on immune cells, triggering reduced pro-inflammatory cytokine production and increased anti-inflammatory responses.[2,16] Through these same receptors, HA interacts with chondrocytes to activate genes promoting collagen and proteoglycan synthesis while suppressing matrix-degrading enzymes.[1,2,3]

2.3. Synovial Fluid Rheology and Movement-Dependent Properties

Synovial fluid exhibits non-Newtonian rheology—its viscosity changes depending on fluid velocity and shear stress. During slow, gentle movement (such as low-intensity stretching), synovial fluid behaves like honey: highly viscous and providing maximal mechanical cushioning and boundary lubrication. During rapid, high-velocity movement (such as running or jumping), the same fluid becomes temporarily less viscous, flowing more readily and reducing frictional resistance during high-speed articulation.[1,2] This shear-thinning property—termed pseudoplasticity—represents an elegant biological solution: protection during gentle motion, efficiency during intense activity.

Additionally, as synovial fluid circulates through the joint during movement, viscous friction converts kinetic energy into heat. This gentle warming enhances HA's lubricating properties and increases cartilage elasticity, providing superior protection during sustained or intense exercise.[1,2] The thermogenic properties of synovial fluid have been documented in studies examining cartilage changes during running and other high-impact activities.[12]

3. ACUTE CHANGES IN SYNOVIAL FLUID FOLLOWING EXERCISE

3.1. Rapid Increases in Hyaluronic Acid Synthesis

Exercise initiates rapid changes in synovial fluid composition. Mechanoreceptors on the synovial membrane sense mechanical pressure and motion, triggering intracellular signaling cascades that upregulate type B synoviocyte production and hyaluronic acid secretion. This response is remarkably fast: studies demonstrate meaningful increases in synovial HA concentration within 15 minutes of exercise initiation, with peak effects occurring 30–60 minutes after the onset of activity.[1,2,3]

Exercise intensity modulates the magnitude of synovial fluid changes. Type B synoviocytes respond to mechanical stimuli via mechanosensitive ion channels and integrin-mediated pathways that increase expression of HA synthase enzymes and biosynthetic machinery. Higher-intensity exercise, such as running or plyometrics, produces greater synovial fluid responses than low-intensity activities, such as walking. Following exercise cessation, acute increases in synovial fluid volume and composition begin to normalize over 24–48 hours in structurally healthy joints—unless exercise stimulus is repeated, in which case subsequent adaptive responses may be amplified.[1][2][29]

3.2. Acute Inflammatory Response: Physiology and Adaptation

Vigorous exercise triggers a transient elevation of pro-inflammatory mediators in synovial fluid. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α), interleukin-1-beta (IL-1 β), prostaglandin E2, and substance P all increase within hours of intense activity, accompanying rising white blood cell counts in the synovial space.[2,16]

This inflammatory response must be interpreted correctly: it reflects physiological adaptation rather than pathological damage. This inflammation serves essential purposes—clearing micro-debris, accelerating

nutrient delivery, and activating fibroblasts and chondrocytes to synthesize new cartilage matrix components. In healthy individuals with structurally intact joints, this response is tightly regulated and brief, typically resolving within 24–72 hours. [2,3] The resolution of these markers correlates with upregulation of tissue repair mechanisms and increased collagen synthesis.[5]

The distinction between exercise-induced and pathological inflammation is instructive. In chronic diseases such as osteoarthritis or rheumatoid arthritis, inflammatory markers remain persistently elevated for weeks or months, driving progressive cartilage loss. In contrast, synovial fluid after physiological exercise in a healthy joint exhibits an inflammatory peak that resolves rapidly, coinciding with upregulated collagen synthesis. [2,3,16]. pH serves as an additional marker distinguishing these two inflammatory phenotypes. Following vigorous exercise, synovial fluid pH remains stable within the physiological range (pH 7.35–7.43), indicating that acute exercise-induced inflammation operates through tightly regulated immune mechanisms without disrupting the joint microenvironment. [21,22]. In contrast, chronic pathological inflammation is characterized by a significant pH decline (pH < 7.2–6.98), reflecting accumulated lactate from continuous immune cell infiltration and metabolic dysfunction. This pH stability during exercise-induced inflammation represents.[22] Animal models reinforce this distinction: joints receiving non-exercise inflammatory stimuli show sustained elevation of biomarkers and ongoing collagen degradation, whereas joints responding to physiological loading show transient inflammatory peaks coupled with increased matrix synthesis. [2,3]

A critical adaptation occurs with repeated training: while the first exercise bout triggers robust elevation of IL-6 and TNF- α , by the second and third sessions, the magnitude of cytokine increase diminishes. By two weeks of consistent training, baseline inflammatory markers begin to trend downward at rest—even though individual sessions still provoke transient spikes. [2,3] This represents joint adaptation: the inflammatory reaction becomes progressively more efficient and less injurious.

3.3. Cartilage Turnover Biomarkers: Evidence of Remodeling

When cartilage undergoes remodeling during mechanical loading, collagen and proteoglycan fragments are released into synovial fluid. These biomarkers—including collagen II cleavage (C2C), procollagen II N-terminal propeptide (CPII), aggrecan-derived fragments, and cartilage oligomeric matrix protein (COMP)—can be measured to assess cartilage activity.[3,4,9]

Following vigorous exercise, these biomarkers typically increase substantially. A person may exhibit doubling or tripling of baseline COMP concentration within hours of high-intensity activity, with magnitude correlating directly to exercise intensity: light walking produces minimal elevation, while plyometric or eccentric exercise produces robust increases.[3,4] This elevation does not indicate cartilage destruction. Rather, it reflects active cartilage turnover—coordinated breakdown and rebuilding of the extracellular matrix.

At the molecular level, matrix metalloproteinases (MMPs) cleave collagen and proteoglycan, releasing measurable fragments. Simultaneously, chondrocytes upregulate the synthesis of new type II collagen and aggrecan to replace degraded components.[3,4,5] In healthy, well-trained joints, this anabolic response exceeds the catabolic response, resulting in a net gain in cartilage resilience and composition over time.[3,4]

4. CHRONIC ADAPTATIONS: SUSTAINED TRAINING EFFECTS ON SYNOVIAL FLUID

4.1. Sustained Elevation of Basal Hyaluronic Acid

Regular training modulates synovial hyaluronic acid production beyond acute exercise responses. *In animal models*, cyclic joint movement increases HA secretion into the synovial cavity by approximately 78–87% compared with a static joint position, through intracellular calcium signaling, phospholipase C (PLC) activation, and protein kinase C (PKC)—mediated phosphorylation of mitogen-activated protein kinases (MEK–ERK and p38).[2][33] These mechanically-induced responses occur within hours and correlate with increased expression of hyaluronic acid synthase (HAS) enzymes in type B synoviocytes. The precise time course and magnitude of these responses in humans remain to be characterized.

In humans, direct measurement of synovial HA concentration and HAS expression following training interventions has not been systematically studied. However, cross-sectional studies suggest that trained athletes exhibit higher synovial fluid viscosity than sedentary controls, a finding consistent with elevated

baseline HA concentrations or altered HA composition. This association implies, but does not prove, that training-induced upregulation of HAS expression or HA synthesis may occur in human synoviocytes, analogous to animal models.[3][4]

Mechanistic interpretation suggests that if animal mechanisms translate to humans, chronic training might progressively upregulate HAS2 and related HA synthase isoforms through mechanotransduction pathways involving intracellular calcium signaling and kinase activation, leading to sustained elevations in basal HA concentration. Such adaptation would be consistent with observations of improved viscosity and lubrication in trained populations. However, this remains a plausible model pending direct validation through prospective biomarker studies in human subjects.[2][3][4]

Observable changes in trained athletes include improvements in synovial fluid viscosity that become measurable over 4–12 weeks of consistent training and persist with continued activity.[3][4] Higher baseline viscosity reduces friction during movement, enhances shock absorption, and supports superior joint protection during high-intensity activity. Marathon runners and competitive athletes show the most pronounced improvements in these parameters, suggesting that joint viscosity is responsive to prolonged and intensive mechanical loading.[11][15]

The molecular mechanisms underlying improved synovial fluid quality in trained individuals—whether reflecting increased HA concentration, optimized HA molecular weight distribution, enhanced proteoglycan-4 (lubricin) production, or a combination of these factors—await direct characterization through comprehensive synovial fluid biomarker profiling and tissue-level molecular analysis in training-adapted humans.

4.2. The Anti-Inflammatory Shift in Chronic Training

While acute exercise temporarily elevates pro-inflammatory cytokines, chronic training produces a sustained shift toward anti-inflammatory dominance. Regularly active individuals show lower basal concentrations of TNF- α and IL-1 β and higher concentrations of IL-10 and IL-4, which are immunoregulatory and anti-inflammatory.[2,3,16]

This shift is substantial and protective. When a trained athlete performs acute exercise, they still exhibit IL-6 elevation, but the magnitude and duration of this rise are notably attenuated compared with untrained individuals, and the return to baseline is faster.[2,3] This phenomenon—termed “exercise-induced inflammatory tolerance”—reflects joint adaptation: the tissue has learned to mount an efficient inflammatory response that is simultaneously protective (clearing debris, signaling repair) and controlled (not progressing into chronic inflammation).

Importantly, this does not reflect immune suppression. Rather, athletes have developed a more refined, efficient immune response. Clinical studies support this: therapeutic exercise in patients with knee inflammation increases intra-articular IL-10 and reduces IL-1 β and TNF- α .[2,3,14]

4.3. Cartilage Preservation and Stable Biomarker Patterns

Despite transient elevations in cartilage biomarkers after each exercise bout, chronically training individuals show remarkable preservation of cartilage structure and composition.[3,4] This reflects a favorable tipping of the balance between degradation and synthesis. Repeated mechanical loading stimulates anabolic pathways in chondrocytes, upregulating type II collagen and aggrecan synthesis. Simultaneously, the anti-inflammatory cytokine dominance in trained athletes suppresses matrix metalloproteinase MMP activity, and if accompanied by enhanced HA concentration, as animal models suggest, this would further prevent matrix degradation and suppress matrix metalloproteinase (MMP) activity and enhance the expression of tissue inhibitors of metalloproteinases (TIMPs), enzymes that prevent matrix degradation and preserve structural integrity.[1,3,4,5]

Longitudinal studies demonstrate that long-term athletes (runners, tennis players, swimmers) maintain or even increase cartilage thickness and composition into middle age despite decades of loading, whereas sedentary individuals show progressive cartilage thinning.[4,5,10,15] This represents the long-term consequence of repeated exercise stimulus and favorable synovial fluid adaptations. Magnetic resonance imaging studies of recreational runners who completed 1000 marathons show remarkably preserved knee and spinal structures.[15]

5. TIMELINE OF SYNOVIAL FLUID RESPONSES TO EXERCISE

5.1. Hours to Days After a Single Workout

Understanding the temporal sequence of synovial fluid responses is essential for rational training design and recovery planning. Synovial responses do not occur uniformly—different biomarkers peak at different timepoints.[12]

Acute mechanical response phase (0–24 hours). Immediately after exercise cessation, mechanotransduction pathways are activated in synoviocytes, leading to increased HA synthase expression and enhanced synovial fluid secretion. Type B synoviocytes respond rapidly to mechanical loading removal, upregulating biosynthetic machinery and increasing synovial fluid volume. [15,30] Synovial fluid volume and HA concentration increase progressively over the first 24 hours, with maximal changes typically observed by 24–48 hours post-exercise.[29]

Early inflammatory phase (8–48 hours). Pro-inflammatory cytokines, including interleukin-6, TNF- α , and interleukin-1 β , reach elevated concentrations beginning approximately 8–24 hours post-exercise, accompanied by increased cartilage biomarkers and white blood cell counts in the synovial fluid.[3,4,16] The inflammatory response continues to evolve during the 24–48 hour window, representing the peak inflammatory phase and the greatest release of cartilage turnover markers.[9,29]

Resolution phase (2–7 days). Over this period, cytokines decline toward baseline, leukocyte counts normalize, and biomarkers gradually fall—though some may remain mildly elevated beyond 48 hours.[3,4] HA concentration remains responsive to subsequent mechanical loading, with chronic training over 4–12 weeks producing sustained elevations in basal HA levels that support long-term joint protection.[3,4]

These changes represent the joint's coordinated adaptive response to mechanical loading. Given adequate recovery and nutrition, acute inflammatory markers resolve within 7 days without causing lasting cartilage damage. This temporal pattern explains the rationale for spacing high-intensity efforts 48–72 hours apart—sufficient time for acute inflammatory responses to resolve before the next training stimulus arrives, allowing cumulative adaptive benefits without excessive inflammatory burden.

5.2. Adaptations

Over Weeks and Months of Training

What happens with consistent training? Acute responses from individual sessions summate into lasting changes.

Weeks 1–4. Based on observations in trained athletes and mechanistic studies in animal models, synovial fluid adaptations begin during this period. Viscosity improvements become observable in cross-sectional comparisons between trained and sedentary individuals, consistent with potential increases in HA production. The peak inflammatory response to individual workouts gradually diminishes.[3,4]

Weeks 4–12. "Synovial fluid viscosity improvements continue to accumulate, with marked enhancements in non-Newtonian flow properties observed in trained athletes. Post-exercise inflammatory spikes are substantially blunted compared with those of untrained individuals, reflecting the adaptive shift toward anti-inflammatory dominance.[3,4] If the mechanotransduction pathways documented in animal models operate similarly in humans, chronic HAS upregulation might produce measurable increases in basal HA concentration during this window, though direct measurements during active human training remain lacking.

Week 12 and beyond (chronic training). Trained athletes exhibit superior synovial fluid viscosity and a more profoundly anti-inflammatory profile compared with sedentary individuals. These observations are consistent with enhanced HA metabolism and improved synovial fluid quality. The joint has achieved a new homeostatic state, characterized by chronically elevated protective molecules and sustained suppression of inflammatory signaling.[2,3,4] The synovial cytokine profile is durably anti-inflammatory—IL-10 and IL-4 predominate.[2,3,16] Cartilage biomarkers return to low, stable baseline values despite ongoing mechanical stress.[3,4,11] The joint has achieved a new steady state: chronically elevated protective molecules and sustained suppression of inflammation. This timeline reflects the mechanotransduction-driven upregulation of HA synthesis machinery and the progressive remodeling of synovial immune function toward an anti-inflammatory phenotype.

6. EXERCISE TYPE, INTENSITY, AND JOINT-SPECIFIC RESPONSES

6.1. Differential Effects of Exercise Modalities

Not all exercise produces identical synovial adaptations, and understanding these modality-specific responses enables informed training selection.

Low-impact aerobic exercise (walking, cycling, swimming) delivers consistent, moderate joint loading without jarring impacts. This stimulates steady HA synthesis, produces modest increases in fluid volume, and generates minimal post-exercise inflammation.[1,3] These characteristics make low-impact training ideal for long-term cartilage health across all ages. Low-impact exercise is especially valuable for older adults and individuals with early signs of cartilage wear, providing protective stimulus without overwhelming the repair machinery.

High-impact aerobic exercise (running, jumping, trail activities) applies larger mechanical loads per stride, resulting in greater acute increases in synovial volume and HA secretion, and stronger inflammatory responses.[3,12] In structurally healthy joints, these responses remain transient and adaptive. Importantly, higher loading appears to produce greater viscosity improvements than low-impact training alone—observations consistent with potentially higher HA concentrations in high-impact sport athletes, though the specific mechanisms and HA compositional changes in humans remain to be characterized.[1,3,4,11] For runners and field sport athletes, these higher baseline HA levels offer superior shock absorption and friction reduction during high-velocity movements. The acute effects on cartilage and meniscus have been documented using magnetic resonance relaxation-time measurements.[12]

Resistance and strength training impose substantial compressive and shear loads, triggering marked acute increases in synovial volume, viscosity, and robust cartilage biomarker responses.[3,13] With appropriate progression (avoiding excessive load increases), chronic strength training strengthens cartilage mechanical properties and confers durable joint protection in healthy individuals.[1,3,13] The key principle is gradual progression: increasing load gradually over weeks allows synovial adaptations to keep pace with biomechanical demands.

In practice, an optimal joint-protective program combines elements of all three modalities. Cardiovascular training provides steady HA stimulus, strength training optimizes cartilage mechanics, and mobility work maintains range of motion and reduces injury risk.[1,3]

6.2. Importance of Warm-Up and Cool-Down

A proper warm-up accomplishes more than simply elevating heart rate—it directly prepares the joint. Ten to fifteen minutes of low-to-moderate intensity activity triggers HA secretion, increases viscosity, raises joint temperature (through viscous damping), and improves cartilage elasticity before higher-intensity loading begins.[3] These changes reduce friction and mechanical stress during the main effort, lowering injury risk.

Similarly, a brief cool-down—5–10 minutes of low-intensity movement after intense activity—facilitates gradual resolution of inflammation and maintains synovial circulation.[3] This potentially extends elevated HA levels into the early recovery period, supporting nutrient delivery and waste removal while limiting post-exercise stiffness.

6.3. Recovery Intervals and Load Management

Because inflammatory and cartilage biomarkers remain elevated 2–7 days after strenuous exercise, adequate spacing between high-intensity bouts is essential.[3,4] Allowing 48–72 hours between maximal efforts gives acute responses time to resolve and synovial composition to restabilize before the next peak load.[3,5]

Importantly, this does not require complete rest. Low-to-moderate-intensity “active recovery” sessions—such as light jogging, cycling, or swimming—can be performed on recovery days without substantially elevating biomarkers. In fact, gentle movement on recovery days may accelerate joint recovery by promoting synovial circulation and nutrient delivery.[1,3,4]

7. AGE, SEX, AND INDIVIDUAL VARIABILITY

7.1. Age Considerations

Older adults (>65 years) generally show smaller and slower HA increases after acute exercise, and basal HA levels tend to decline with age, even in regularly active individuals. This makes lifelong exercise particularly important for aging athletes—it is among the most effective tools for maintaining synovial HA

and cartilage health. Adaptation periods of 8–12 weeks may be necessary to achieve maximal chronic adaptations in older individuals, compared with 4–6 weeks in younger populations.[1]

7.2. Sex Differences

Limited data suggest that female athletes may experience somewhat greater post-exercise elevations in inflammatory markers and slower resolution than males. However, both sexes derive substantial benefits from training, including improved synovial fluid viscosity and enhanced joint function consistent with elevated HA metabolism. Current evidence does not support sex-specific exercise prescriptions for joint protection.

7.3. Individual Variability

Considerable person-to-person variation exists in the magnitude and timing of synovial adaptations. Genetic factors, baseline inflammatory status, and immune regulatory capacity likely contribute to these differences.[7] For this reason, monitoring clinical signs—joint pain, swelling, stiffness—helps tailor training loads to an individual’s capacity. In elite settings, periodic assessment of synovial biomarkers can provide objective data to guide load management.

8. CLINICAL APPLICATIONS AND JOINT HEALTH MANAGEMENT

8.1. Synovial Biomarkers as Clinical Assessment Tools

Synovial fluid biomarkers—including HA concentration, cartilage turnover markers (CPII, C2C), and cytokine profiles—provide windows into joint tissue biochemistry and can be assessed via arthrocentesis (needle aspiration).[3,4,9] In clinical and sports medicine settings, these measures distinguish healthy adaptive responses to exercise from early signs of joint overload or degenerative changes.[3,4,14]

A practical clinical guideline: persistent elevation of catabolic biomarkers (e.g., C2C, aggrecan fragments) beyond approximately 7 days after intensive loading suggests excessive mechanical stress or inadequate recovery, signaling the need to reduce training loads.[4,9] For elite athletes in high-risk sports (marathon running, soccer, basketball), periodic biomarker monitoring can identify emerging joint stress before clinical symptoms appear, enabling proactive training adjustment.[4,9,11]

8.2. Overtraining Syndrome and Joint Overload

When training volume and intensity become excessive and recovery is insufficient, the normal adaptive pattern of synovial responses breaks down. Athletes in an overtraining state show chronically elevated cartilage biomarkers and pro-inflammatory cytokines, incomplete resolution of acute responses between sessions, and impaired HA replenishment.[3,7,11] Clinically, they report persistent joint discomfort, swelling, stiffness, and performance decline—potentially linked to maladaptive synovial fluid changes.

Prevention follows several synergistic principles: Periodized training is foundational, with structured recovery weeks every 4–6 weeks that reduce volume and intensity by 30–50%. Adequate intra-week recovery is equally critical: space high-intensity or high-impact sessions 48–72 hours apart to allow synovial composition to stabilize between efforts. On non-intensive days, perform low-intensity movement to maintain beneficial synovial circulation without triggering additional acute responses. Finally, prioritize 7–9 hours of quality sleep and adequate protein and micronutrient intake to support immune regulation and tissue repair—sleep deprivation impairs the very immune tolerance mechanisms that protect joints during training.[3,20]

8.3. Injury Rehabilitation and Return-to-Sport Decisions

Acute joint injuries—ligament sprains, cartilage microtrauma—cause profound synovial disruption. Inflammatory cytokines spike dramatically, cartilage degradation markers soar, and HA concentration and viscosity often drop, compromising lubrication and mechanical protection.[1,3,5] Recovery requires progressively graded loading to restore normal HA synthesis, resolve inflammation, and normalize synovial composition.[1,2,3,14]

Return-to-sport decisions should extend beyond clinical recovery (resolution of swelling, restoration of range of motion). Where feasible, normalization of key synovial biomarkers—cartilage turnover markers and cytokine levels—provides objective confirmation that intra-articular tissues have adequately recovered.[3,4,14] Returning to sport while synovial markers remain abnormal risks re-injury and chronic joint dysfunction.[1,3]

9. NUTRITIONAL AND LIFESTYLE SUPPORT FOR JOINT HEALTH

9.1. Hydration

Synovial fluid is approximately 95% water. Dehydration—acute or chronic—directly reduces synovial volume and impairs HA's lubricating properties, increasing friction and diminishing shock absorption.[1,2] Athletes should maintain approximately 0.5–1.0 ounce of fluid per pound of body weight daily, adjusting for sweat loss and environmental conditions, and avoid exceeding 2% body-mass loss from sweat during prolonged or intense efforts to preserve synovial volume and performance.

9.2. Micronutrients Supporting Synovial Function

Type B synoviocytes and cartilage cells depend on adequate micronutrient status for optimal function. Vitamin C (ascorbic acid) acts as a cofactor for enzymes that hydroxylate collagen, an essential step in collagen cross-linking and matrix stability, and supports antioxidant defense and immune regulation—recommended intake 90–200 mg/day from citrus, berries, peppers, and dark leafy greens.[6,18] Vitamin E (α -tocopherol) and other antioxidants limit oxidative stress in synovial tissue and reduce pro-inflammatory cytokine production; recommended intake is 15 mg/day from nuts, seeds, and plant oils.[6,18]

Zinc is a cofactor for HA synthase and other enzymes involved in HA synthesis and immune regulation, and it modulates cytokine production; recommended intake is 8–11 mg/day from legumes, nuts, whole grains, and shellfish.[6] Copper is essential for lysyl oxidase, an enzyme that cross-links collagen and stabilizes the cartilage matrix; recommended intake is 0.9 mg/day from shellfish, nuts, and seeds.[6] These micronutrients work synergistically to support both synovial function and systemic immune tolerance.[18]

9.3. Anti-Inflammatory Dietary Patterns

Dietary patterns rich in omega-3 polyunsaturated fatty acids, polyphenol-containing foods, and fiber support a systemic and intra-articular anti-inflammatory environment.[6,7,17,18] Mediterranean-style and plant-forward diets—emphasizing vegetables, fruits, whole grains, legumes, and fatty fish—are associated with lower inflammatory burden in musculoskeletal tissues.[7,17] Conversely, diets high in ultra-processed foods, refined carbohydrates, and saturated fats promote both systemic and intra-articular inflammation.[7]

For athletes, an anti-inflammatory dietary approach emphasizing whole foods, fatty fish (salmon, sardines, mackerel), colorful vegetables, and legumes while limiting processed foods supports joint health. [6,7,17,19] These dietary interventions represent evidence-based approaches to managing inflammation and promoting cartilage preservation.[19]

9.4. Sleep and Recovery

Sleep regulates immune function, tissue repair, and metabolic homeostasis. [1,2] During sleep, synoviocytes and immune cells undergo metabolic restoration, and growth hormone secretion supports tissue anabolism and repair. [1,2] Chronic sleep restriction (<7 hours/night) impairs immune regulation, prolongs post-exercise inflammatory responses, and delays restoration of normal synovial composition. [1,2,20]

Athletes should aim for 7–9 hours of high-quality sleep nightly, and 9–10 hours during periods of intensive training, to optimize joint recovery and synovial adaptations. [1,2,20] Sleep represents a critical but often overlooked intervention for preserving joint homeostasis in athletic populations.

10. CONCLUSIONS

Exercise profoundly reshapes synovial fluid, helping protect joints. Acute exercise bouts trigger temporary increases in fluid volume, HA concentration, inflammatory cytokines, and cartilage biomarkers—all representing the joint's physiological response to mechanical loading.[1,2,3,11] With adequate recovery, these short-term changes resolve and set the stage for lasting benefits.

Regular, well-structured training produces sustainable improvements in synovial fluid quality. Synovial fluid viscosity and anti-inflammatory markers improve substantially, consistent with enhanced HA metabolism and production, supported by mechanistic evidence and cross-sectional comparisons; however, the specific mechanisms and magnitude of changes in human HA concentration with training require further investigation.[2,3,4,16] These adaptations support lubrication, nutrient delivery, and cartilage preservation, directly contributing to long-term joint health and athletic resilience.[10,15]

Compared with sedentary behavior—which impairs synovial fluid quality and accelerates cartilage degeneration—or with immobilization—which rapidly depletes synovial HA and triggers cartilage cell death—regular exercise emerges as a central strategy for preserving joint homeostasis and extending athletic

longevity.[1,4,5] The formula is straightforward: appropriately dosed exercise combined with adequate recovery, sound nutrition, strategic micronutrient supplementation, and sufficient sleep.[6,19,20]

Future research should focus on identifying biomarker profiles that predict optimal recovery timing for individual athletes, developing periodization models tailored to specific sports and age groups, and evaluating whether biomarker-guided training adjustments further reduce injury risk and extend athletic careers. Understanding synovial fluid dynamics represents a critical frontier in sports medicine and joint preservation across the lifespan.

Disclosure

Author Contributions: Tamara Korohod[TK], Maksym Skoryi[MS] Agnieszka Binkiewicz [AB], Paulina Ramanckaite [PR], Martyna Pietrzak Chmiel [MP], Ilona Tadulewicz [IT], Sylwia Łatkowska[SL], Maciej Ślesik[MSL], Aleksandra Pawlik[APA], Aleksandra Pudzianowska [AP]

- Conceptualization: [TK], [MP], [MSL], [AP]
- Methodology: [MS], [MP], [APA]
- Software: [MS], [PR], [SL], [TK]
- Check: [TK], [IT], [MSL], [AP]
- Formal analysis: [AB], [PR], [APA]
- Data curation: [MS], [IT], [SL]
- Writing-rough preparation: [TK], [MP], [MSL]
- Writing-review and editing: [AB], [PR], [SL], [AP]
- Supervision: [AB], [IT], [APA]

All authors have read and agreed with the published version of the manuscript

Funding Statement: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting this study are available in the article's references.

Conflict of Interest: The authors declare no conflict of interest.

Declaration on the use of AI: In preparing this work, the authors used Perplexity and Grammarly to improve language and readability, text formatting, and verification of bibliographic styles. After using this tool/service, the authors have reviewed and edited the content as needed and accept full responsibility for the publication's substantive content.

REFERENCES

1. Luria A, Chu CR. Articular cartilage changes in maturing athletes: new targets for joint rejuvenation. *Sports Health*. 2014;6(1):41–48. <https://doi.org/10.1177/1941738113514369>
2. Ingram KR, Knight MM, McInnes IB, et al. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints. *J Physiol*. 2008;586(14):3409–3419. <https://doi.org/10.1113/jphysiol.2007.146753>
3. Griffin TM, Huebner JL, Kraus VB, et al. Exercise induces dynamic changes in the intra-articular environment. *Sci Rep*. 2025;15(1):2428. <https://doi.org/10.1038/s41598-025-86726-0>
4. Ritter SY, Subbaiah R, Bebek G, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. *Arthritis Rheum*. 2013;65(4):981–992. <https://doi.org/10.1002/art.37823>
5. de Grauw JC, van de Lest CHA, van Weeren PR. Inflammatory mediators and cartilage biomarkers in synovial fluid after a single inflammatory insult: a longitudinal experimental study. *Arthritis Res Ther*. 2009;11(1):R35. <https://doi.org/10.1186/ar2640>
6. Bañuls-Mirete M, Oggie A, Guma M. Micronutrients: essential treatment for inflammatory arthritis? *Curr Rheumatol Rep*. 2020;22(12):87. <https://doi.org/10.1007/s11926-020-00962-z>
7. Colletti A, Cicero AFG, Valacchi G, et al. Nutraceutical approach to chronic osteoarthritis: from molecular research to clinical evidence. *Int J Mol Sci*. 2021;22(23):12920. <https://doi.org/10.3390/ijms222312920>
8. Iaconisi GN, Gallo N, Caforio L, et al. Clinical and biochemical implications of hyaluronic acid in musculoskeletal rehabilitation: a comprehensive review. *J Pers Med*. 2023;13(12):1647. <https://doi.org/10.3390/jpm13121647>
9. Dreiner M, Kittinger S, Ritter R, et al. Relationship between different serum cartilage biomarkers in response to acute running and jumping exercise. *Sci Rep*. 2022;12:7012. <https://doi.org/10.1038/s41598-022-10310-z>
10. Zhang Y, Wang D, Song X, et al. Effects of long-term running on the structure and biochemical composition of knee cartilage in males: a cross-sectional study. *Quant Imaging Med Surg*. 2024;14(8):6036–6047. <https://doi.org/10.21037/qims-23-1563>
11. Hernández-Hermoso JA, Nescolarde L, Roca E, et al. Marathon running increases synthesis and decreases catabolism of joint cartilage type II collagen accompanied by high-energy demands and an inflammatory reaction. *Front Physiol*. 2021;12:722718. <https://doi.org/10.3389/fphys.2021.722718>

12. Subburaj K, Kumar D, Souza RB, et al. The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. *Am J Sports Med.* 2012;40(9):2134–2141. <https://doi.org/10.1177/0363546512449816>
13. McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage injury in athletes. *Cartilage.* 2010;1(3):165–179. <https://doi.org/10.1177/1947603509360210>
14. Zeng CY, Li H, Yang T, Deng ZH, Yang Y, Zhang Y, Lei GH. Benefits and mechanisms of exercise training for knee osteoarthritis. *Front Physiol.* 2021;12:794062. <https://doi.org/10.3389/fphys.2021.794062>
15. Rhim H, Kim YH, Kim M, et al. Magnetic resonance imaging findings of knees and spines in recreational runners who completed 1000 marathons. *PLoS One.* 2019;14(11):e0224607. <https://doi.org/10.7759/cureus.6382>
16. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. *Arterioscler Thromb Vasc Biol.* 2011;31(5):986–1000. <https://doi.org/10.1161/ATVBAHA.110.207449>
17. Oppedisano F, Bulotta RM, Maiuolo J, et al. The role of nutraceuticals in osteoarthritis prevention and treatment: focus on n-3 PUFA s. *Oxid Med Cell Longev.* 2021;2021:4878562. <https://doi.org/10.1155/2021/4878562>
18. Li G, Yin J, Gao Y, et al. The impact of trace elements on osteoarthritis. *Front Med.* 2021;8:771297. <https://doi.org/10.3389/fmed.2021.771297>
19. Castrogiovanni P, Trovato FM, Loreto C, Nsir H, Szychlinska MA, Musumeci G. Nutraceutical supplements in the management and prevention of osteoarthritis. *Int J Mol Sci.* 2016;17(12):2042. <https://doi.org/10.3390/ijms17122042>
20. Poles J, Karhu E, McGill M, McDaniel HR, Lewis JE. The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: a narrative review. *J Clin Transl Res.* 2021;7(3):333–376. <https://doi.org/10.18053/jctres.07.202103.004>
21. Treuhaft, P. S., & McCarty, D. J. (1971). Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. *Arthritis and rheumatism,* 14(4), 475–484. <https://doi.org/10.1002/art.1780140407>
22. Judl, T., Popelka, S., Tomšík, E., Hrubý, M., Daniel, M., Fojt, J., Melicherčík, P., Landor, I., & Jahoda, D. (2024). Acidity Is an Excellent Marker of Infection in Hip and Knee Arthroplasty. *Journal of clinical medicine,* 13(3), 688. <https://doi.org/10.3390/jcm13030688>
23. Matheson, A., Regmi, S. C., Jay, G. D., Schmidt, T. A., & Scott, W. M. (2020). The Effect of Intense Exercise on Equine Serum Proteoglycan-4/Lubricin. *Frontiers in veterinary science,* 7, 599287. <https://doi.org/10.3389/fvets.2020.599287>
24. Ogawa, H., Kozhemyakina, E., Hung, H. H., Grodzinsky, A. J., & Lassar, A. B. (2014). Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. *Genes & development,* 28(2), 127–139. <https://doi.org/10.1101/gad.231969.113>
25. Iqbal, S. M., Leonard, C., Regmi, S. C., De Rantere, D., Tailor, P., Ren, G., Ishida, H., Hsu, C., Abubacker, S., Pang, D. S., Salo, P. T., Vogel, H. J., Hart, D. A., Waterhouse, C. C., Jay, G. D., Schmidt, T. A., & Krawetz, R. J. (2016). Lubricin/Proteoglycan 4 binds to and regulates the activity of Toll-Like Receptors In Vitro. *Scientific reports,* 6, 18910. <https://doi.org/10.1038/srep18910>
26. Schmidt, T. A., Plaas, A. H., & Sandy, J. D. (2009). Disulfide-bonded multimers of proteoglycan 4 PRG4 are present in normal synovial fluids. *Biochimica et biophysica acta,* 1790(5), 375–384. <https://doi.org/10.1016/j.bbagen.2009.03.016>
27. Grandys, M., Majerczak, J., Frolow, M., Chlopicki, S., & Zoladz, J. A. (2023). Training-induced impairment of endothelial function in track and field female athletes. *Scientific reports,* 13(1), 3502. <https://doi.org/10.1038/s41598-023-30165-2>
28. Band, P. A., Heeter, J., Wisniewski, H. G., Liublinska, V., Pattanayak, C. W., Karia, R. J., Stabler, T., Balazs, E. A., & Kraus, V. B. (2015). Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. *Osteoarthritis and cartilage,* 23(1), 70–76. <https://doi.org/10.1016/j.joca.2014.09.017>
29. Schreiner, J. K., Recker, F., Scheicht, D., Karakostas, P., Ziob, J., Behning, C., Preuss, P., Brossart, P., & Schäfer, V. S. (2022). Changes in ultrasound imaging of joints, entheses, bursae and tendons 24 and 48 h after adjusted weight training. *Therapeutic advances in musculoskeletal disease,* 14, 1759720X221111610. <https://doi.org/10.1177/1759720X221111610>
30. Levick, J. R., & McDonald, J. N. (1995). Fluid movement across synovium in healthy joints: role of synovial fluid macromolecules. *Annals of the rheumatic diseases,* 54(5), 417–423. <https://doi.org/10.1136/ard.54.5.417>